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Preface

About the book

The aim of this book is to render available to readers the tools that nonlinear
dynamics provides for the exploration of new problems in all fields of physics.
In research we deal with open problems: problems for which, at the beginning,
we have no solutions but at most a set of hunches, feelings and guesses based
on our previous experience with other problems. From there, we work our path
to the solutions (though we do not always succeed). In finding our way we take
what seems to us the most natural approach just as we would bush-walk in the
forest avoiding as much as possible the difficult paths in our hike towards an
interesting place.

We will follow in the presentation the same procedure that we follow when
doing research, i.e., we begin with the problem and find one path to the solution,
we work inductively proposing new paths, checking them and redrawing our
route according to the experience we gain in successive efforts.

We will avoid the temptation of selecting the problems according to the tools
we possess. Rather, we prefer to construct the tools along with the problems. We
sustain the idea that our tools (theories) and our problems evolve hand in hand.
The best pages of physics have been written in this way. Consider for example
the pairs calculus-mechanics (Newton) or Hilbert spaces-quantum theory (Von
Neumann) and, as we will see, nonlinear dynamics-topology (Poincare).

This is a book to be read with paper and pencil at hand. Our intention is
to furnish readers with enough knowledge to be able to do research in nonlinear
dynamics after having read the book (or better, while they are reading the book).
We prefer to convey the key ideas within their mathematical framework rather
than doing lengthy demonstrations. Therefore, the calculations around the results
presented in the book are usually only sketched or left more or less as guided
exercises.

At the end of the day, we would like the reader to finish this book with the
feeling (or certainty) that, given enough time, she/he would have come up with
the same answers to the problems as those we have shown (well . . . perhaps
just better answers). After all the answers are dictated by the problems, the two
of them evolve in interaction, and our task is to read them from nature.
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Preface

About nonlinear dynamics

Nonlinear dynamics is a subject at least as old in physics as Newton’s mechanics.
The dynamics of the planetary system, a primary concern for Newton, Poincart
and many others, turns out to be nonlinear in general, but fortunately the simplest
examples can be solved exactly (two-body systems are completely integrable). In
the context of Hamiltonian mechanics a completely integrable system is ‘almost’
a linear system in an appropriate set of coordinates (those given by the Hamilton-
Jacobi theory for integrable systems [arno89]).

In contrast, three-body problems are also nonlinear, but in general very
complex and non-integrable. It was while studying the three-body problem
that Poincare gave a new and important impulse to nonlinear dynamics at the
beginning of the 20th century. However, the new physics of the atom (later
the nucleus, then quarks, . . .) caught the attention of physicists. There was
apparently no use for nonlinear dynamics in quantum mechanics since the latter
rests on Hilbert spaces (linear spaces after all). The excess of zeal with quantum
mechanics caused the (almost complete) disappearance of nonlinear dynamics
from physics and especially from textbooks.

The emergence of computers as new tools for theoretical physics in the late
1950s and early 1960s favoured a comeback of nonlinear dynamics. Numerical
simulations made accessible to the intuition of physicists and non-physicists the
richness of nonlinear models. The graphical output added an artistic touch.

Commensurate with its earlier neglect, the impact of the phenomenology
of nonlinear dynamics rocked the physics community in the early 1980s  to the
point that people even talked of a ‘new science’ [glei87].

Today, we have a calmer perspective. We recognize that many situations
can only be described with nonlinear interactions. There is a growing consci-
ousness that the tools, methods and phenomenology of nonlinear dynamics will
be increasingly necessary for the study of most subjects in physics and natural
science in general.

The present text is far from being a complete guide to nonlinear dynamics
but it covers the basic ideas for general systems. Some topics, though important
for historical and even practical reasons for physicists, like one-dimensional
maps and Hamiltonian mechanics, have not been emphasized, on purpose. We
are certain that if we were to stress these special (singular) cases we would
induce the wrong generalization, just as our generation was induced to think
that Hamilton-Jacobi theory applied to all systems.

The discussion is presented in most cases having in mind low-dimensional
systems, i.e., systems where the spatial aspects behave coherently. In general,
spatio-temporal dynamics is known to a lesser degree than low-dimensional
dynamics and the authors’ knowledge of the subject is correspondingly more
limited.


