Nonlinear Dynamics

A Two-way Trip from Physics to Math

H G Solari

Departamento de Fisica, Universidad de Buenos Aires, Argentina

M A Natiello

Department of Mathematics, Royal Institute of Technology, Sweden

G B Mindlin

Departamento de Fisica, Universidad de Buenos Aires, Argentina

BIBLIOFE (LO PALLON

Institute of Physics Publishing Bristol and Philadelphia

Contents

	Acknowledgments	XV
	Preface	xvii
1	 Nonlinear dynamics in nature 1.1 Hiking among rabbits 1.2 Turbulence 1.3 Bénard instability 1.4 Dynamics of a modulated laser 1.5 Tearing of a plasma sheet 1.6 Summary 	1 2 3 6 10 13 16
2	Linear dynamics 2.1 Introduction 2.2 Why linear dynamics? 2.3 Linear flows 2.3.1 Autonomous flows 2.3.1.1 Autonomous homogeneous flows 2.3.1.2 Autonomous inhomogeneous flows 2.3.1.3 Singular points in bi-dimensional flows 2.3.2 Forced flows 2.3.2.1 Additively forced flows 2.3.2.2 Parametrically forced flows 2.3.2.3 Floquet's theorem 2.3.2.4 Oscillation theorem-Liapunov-Haupt 2.3.2.5 Arnold tongues 2.4 Summary	19 19 20 20 21 21 26 27 29 30 31 33 35 37 38
	2.5 Additional exercise	38
3	 Nonlinear examples 3.1 Preliminary comments 3.2 A model for the CO₂ laser 3.2.1 The model 3.2.2 Dynamics of the laser 3.3 Duffing oscillator 	39 39 39 39 42 44

	3.3.1 The model	44
	3.3.2 Dynamics in the unforced model	44
	3.4 The Lorenz equations	45
	3.4.1 The model	46
	3.4.1.1 Properties	48
	3.4.2 Simple dynamics in the Lorenz model	49
	3.5 Summary	49
	3.6 Additional exercises	51
4	Elements of the description	53
	4.1 Introduction	53
	4.2 Basic elements	54
	4.2.1 Phase space	54
	4.2.2 Flow	55
	4.2.3 Invariants	56
	4.2.3.1 Orbits	56
	4.2.4 Attractors	58 58
	4.2.4.1 Attracting sets	58 58
	4.2.4.2 Attractors 4.2.4.3 Basin of attraction	58 59
	4.2.4.4 Boundaries of the basin of attraction	59 60
	4.2.5 Trapping regions	60
	4.2.6 Stable and unstable sets	61
	4.3 Poincare sections	62
	4.3.1 Stroboscopic section	62
	4.3.2 Transverse section	63
	4.3.3 Poincart sections and Poincart first-return maps	64
	4.3.3.1 Global Poincare section	64
	4.3.3.2 Local Poincare section	65
	4.4 Maps and dynamics	66
	4.4.1 Properties of maps	67
	4.4.1.1 Conjugated maps	67
	4.5 Parameter dependence	68
	4.5.1 Families of flows and maps	68
	4.6 Summary	69
	4.7 Additional exercise	69
5	Elementary stability theory	71
	5.1 Introduction	71
	5.2 Fixed point stability	72
	5.2.1 Liapunov stability criteria	73
	5.3 The validity of the linearization procedure	76
	5.4 Maps and periodic orbits	79
	5.4.1 Maps	79
	5.4.2 Periodic orbits of flows, Floquet stability theory	80

5.5 Structural stability	82 82
5.5.1 Orbital equivalence	82
5.5.2 Structural equivalence 5.6 Summary	83 84
5.7 Additional exercise	84
Bi-dimensional flows	85
6.1 Limit sets	85
6.2 Transverse sections and sequences	87
6.3 Poincaré–Bendixson theorem	88
6.4 Structural stability	92
6.5 Summary	93
Bifurcations	95
7.1 The bifurcation programme	95
7.1.1 Families of flows and maps	95
7.1.2 Local and global bifurcations	96
7.1.3 Local bifurcations: the programme	96
7.2 Equivalence between flows	97
7.3 Conditions for fixed point bifurcations	98
7.3.1 Unfolding of a bifurcation	loo
7.4 Reduction to the centre manifold	101
7.4.1 Adiabatic elimination of fast-decaying variables	101
7.4.2 Approximation to the centre manifold	102
7.4.3 Centre manifold for maps	105
7.4.4 Bifurcations	106
7.5 Normal forms	107
7.5.1 Example: Jordan block	107
7.5.2 The general case	109
7.5.3 Normal forms for maps	110
7.5.4 Resonances	112
7.5.4.1 Small denominators	113
7.6 Simplest local bifurcations of fixed points	113
7.6.1 Saddle-node bifurcation (flows)	114
7.6.2 Pitchfork and transcritical bifurcations	114
7.6.2.1 Pitchfork bifurcation	114
7.6.2.2 Transcritical bifurcation	115
7.6.2.3 Structural stability	116
7.6.3 Hopf bifurcation (flows)	118
7.6.4 General features of fixed point bifurcations	120
7.7 Bifurcations of maps and periodic orbits	120
7.7.1 Saddle-node bifurcation	120
7.7.2 Flip bifurcation	122
7.7.3 Hopf bifurcation (maps)	123
7.7.3.1 Non-resonant Hopf bifurcation	125

6

7

ix

Contents

7.7.4	Hopf bifurcation at a weak resonance7.7.4.1 Hopf bifurcation at a 1/3 resonance7.7.4.2 Hopf bifurcation at a 1/4 resonance	126 127 128
7.8 Rema		129
7.9 Summ	ary	131
7.10 Addit	ional exercises	131
8 Numerical	experiments	135
	-doubling cascades	136
8.1.1		136
	8.1.1.1 Manifold organization	139
8.1.2	Scaling ratios	142
8.1.3	Period halving: the inverse (noisy) cascade	144
8.2 Torus	•	145
8.2.1		145
	Analysis of the map	147
	oclinic explosions in the Lorenz system	150
	and other phenomena	153 153
	Crisis	155
	Chaotic basin boundaries and chaotic transients	150
	Chaotic scattering	158
8.5 Sumr	nary	
9 Global bif	urcations: I	161
	furcations: I verse homoclinic orbits	161
9.1 Trans 9.1.1	verse homoclinic orbits Linear approximation	161 162
9.1 Trans 9.1.1 9.2 Homo	verse homoclinic orbits Linear approximation oclinic tangencies	161 162 164
9.1 Trans 9.1.1 9.2 Homo 9.3 Homo	verse homoclinic orbits Linear approximation oclinic tangencies oclinic tangles and horseshoes	161 162 164 165
9.1 Trans 9.1.1 9.2 Homo 9.3 Homo 9.4 Heter	verse homoclinic orbits Linear approximation oclinic tangencies oclinic tangles and horseshoes oclinic tangles	161 162 164 165 166
9.1 Trans 9.1.1 9.2 Homo 9.3 Homo	verse homoclinic orbits Linear approximation oclinic tangencies oclinic tangles and horseshoes oclinic tangles	161 162 164 165
9.1 Trans 9.1.1 9.2 Homo 9.3 Homo 9.4 Heter	verse homoclinic orbits Linear approximation oclinic tangencies oclinic tangles and horseshoes oclinic tangles mary	161 162 164 165 166
9.1 Trans 9.1.1 9.2 Homo 9.3 Homo 9.4 Heter 9.5 Sumi 10 Horsesho	verse homoclinic orbits Linear approximation oclinic tangencies oclinic tangles and horseshoes oclinic tangles mary	161 162 164 165 166 169 171 171
9.1 Trans 9.1.1 9.2 Homo 9.3 Homo 9.4 Heter 9.5 Sum 10 Horsesho 10.1 The	verse homoclinic orbits Linear approximation oclinic tangencies oclinic tangles and horseshoes oclinic tangles mary es invariant set	161 162 164 165 166 169 171
9.1 Trans 9.1.1 9.2 Homo 9.3 Homo 9.4 Heter 9.5 Sum 10 Horsesho 10.1 The	verse homoclinic orbits Linear approximation oclinic tangencies oclinic tangles and horseshoes oclinic tangles mary es invariant set .1 A horseshoe prototype	161 162 164 165 166 169 171 171 175 176
9.1 Trans 9.1.1 9.2 Homo 9.3 Homo 9.4 Heter 9.5 Sum 10 Horsesho 10.1 The 10.1 10.2 Cant	verse homoclinic orbits Linear approximation oclinic tangencies oclinic tangles and horseshoes oclinic tangles mary es invariant set .1 A horseshoe prototype	161 162 164 165 166 169 171 171 175 176 177
9.1 Trans 9.1.1 9.2 Homo 9.3 Homo 9.4 Heter 9.5 Sum 10 Horsesho 10.1 The 10.1 The 10.2 Cant 10.3 Sym 10.3	verse homoclinic orbits Linear approximation oclinic tangencies oclinic tangles and horseshoes oclinic tangles mary es invariant set .1 A horseshoe prototype or sets bolic dynamics .1 Restriction of the map to the invariant set	161 162 164 165 166 169 171 171 175 176 177 178
9.1 Trans 9.1.1 9.2 Homo 9.3 Homo 9.4 Heter 9.5 Sum 10 Horsesho 10.1 The 10.1 The 10.2 Cant 10.3 Sym 10.3	verse homoclinic orbits Linear approximation oclinic tangencies oclinic tangles and horseshoes oclinic tangles mary es invariant set .1 A horseshoe prototype or sets bolic dynamics	161 162 164 165 166 169 171 171 175 176 177 178 179
9.1 Trans 9.1.1 9.2 Homo 9.3 Homo 9.4 Heter 9.5 Sum 10 Horsesho 10.1 The 10.1 The 10.1 Cant 10.3 Sym 10.3 10.3	verse homoclinic orbits Linear approximation oclinic tangencies oclinic tangles and horseshoes oclinic tangles mary es invariant set .1 A horseshoe prototype or sets bolic dynamics .1 Restriction of the map to the invariant set	161 162 164 165 166 169 171 171 175 176 177 178 179 179
9.1 Trans 9.1.1 9.2 Homo 9.3 Homo 9.4 Heter 9.5 Sum 10 Horsesho 10.1 The 10.1 10.2 Cant 10.3 Sym 10.3 10.3 10.3 10.3	 verse homoclinic orbits Linear approximation oclinic tangencies oclinic tangles and horseshoes oclinic tangles mary es invariant set .1 A horseshoe prototype or sets bolic dynamics .1 Restriction of the map to the invariant set .2 Periodic points of <i>Fⁿ</i> .3 Orbit dense in A .4 Stable and unstable foliations 	161 162 164 165 166 169 171 171 175 176 177 178 179 179 180
9.1 Trans 9.1.1 9.2 Homo 9.3 Homo 9.4 Heter 9.5 Sum 10 Horsesho 10.1 The 10.1 The 10.2 Cant 10.3 Sym 10.3 10.3 10.3 10.3 10.3	verse homoclinic orbits Linear approximation oclinic tangencies oclinic tangles and horseshoes oclinic tangles mary es invariant set .1 A horseshoe prototype or sets bolic dynamics .1 Restriction of the map to the invariant set .2 Periodic points of F^n 3.3 Orbit dense in A .4 Stable and unstable foliations 8.5 Sensitivity to initial conditions	161 162 164 165 166 169 171 171 175 176 177 178 179 179 180 180
9.1 Trans 9.1 1 9.2 Homo 9.3 Homo 9.4 Heter 9.5 Sum 10 Horsesho 10.1 The 10.1 The 10.1 Cant 10.2 Cant 10.3 Sym 10.3 10.3 10.3 10.3 10.3 10.3 10.3 10.4 Horse	verse homoclinic orbits Linear approximation oclinic tangencies oclinic tangles and horseshoes oclinic tangles mary es invariant set .1 A horseshoe prototype or sets bolic dynamics .1 Restriction of the map to the invariant set .2 Periodic points of F^n 3.3 Orbit dense in A 3.4 Stable and unstable foliations 3.5 Sensitivity to initial conditions seshoes and attractors	161 162 164 165 166 169 171 171 175 176 177 178 179 179 180 180 180
9.1 Trans 9.1 Trans 9.2 Homo 9.3 Homo 9.4 Heter 9.5 Sum 10 Horsesho 10.1 The 10.1 The 10.1 Cant 10.2 Cant 10.3 Sym 10.3 10.3 10.3 10.3 10.3 10.3 10.3 10.4 Hors 10.4 Hors 10.4	verse homoclinic orbits Linear approximation oclinic tangencies oclinic tangles and horseshoes oclinic tangles mary es invariant set .1 A horseshoe prototype or sets bolic dynamics .1 Restriction of the map to the invariant set .2 Periodic points of F^n 3.3 Orbit dense in A 3.4 Stable and unstable foliations 3.5 Sensitivity to initial conditions seshoes and attractors 4.1 Smale's theorem	161 162 164 165 166 169 171 171 175 176 177 178 179 179 180 180 180 181
9.1 Trans 9.1.1 9.2 Homo 9.3 Homo 9.4 Heter 9.5 Sum 10 Horsesho 10.1 The 10.1 10.2 Cant 10.3 Sym 10.3 10.3 10.3 10.3 10.3 10.4 Hors 10.4 Hors 10.4 Hors 10.4 Hors 10.4 Hors 10.4 Hors 10.4 Hors 10.5 Hyp	verse homoclinic orbits Linear approximation oclinic tangencies oclinic tangles and horseshoes oclinic tangles mary es invariant set .1 A horseshoe prototype or sets bolic dynamics .1 Restriction of the map to the invariant set .2 Periodic points of F^n 3.3 Orbit dense in A 3.4 Stable and unstable foliations 3.5 Sensitivity to initial conditions seshoes and attractors	161 162 164 165 166 169 171 171 175 176 177 178 179 179 180 180 180

xi

	10.7 Summary 10.8 Additional exercises		185 185
11	One dimensional mana		187
11	One-dimensional maps 11.1 Unimodal maps of the interval		188
	11.1.1 Itineraries		190
	11.1.1.1 Order on the i	tineraries	191
	11.1.1.2 Reasonable iti		192
		ineraries that are represented by	-
	some point	1 5	193
	11.1.1.4 Some example	es	198
	11.1.1.5 The conclusio	n	200
	11.2 Elementary kneading theory		201
	11.2.1 Kneading of periodic or	bits	201
	11.2.1.1 Orbit implicat		202
	11.3 Parametric families of unimoda	l maps	204
	11.4 Summary		207
12	2 Topological structure of three-dime	ensional flows	209 .
	12.1 Introduction		209
	12.2 Forced oscillators and two-dime	ensional maps	210
	12.3 Topological invariants		214
	12.3.1 The Conway polynomia	l and the linking number	215
	12.3.2 Braids		218
	12.3.3 Relative rotation rates		220
	12.4 Orbits that imply chaos		221
	12.5 Horseshoe formation		223
	12.5.1 Hénon map and the log	istic map	223
	12.5.2 Orbit organization		225
	12.5.3 Subtleties of orbit organ	nization	227
	12.5.4 Suspensions		227 229
	12.5.5 Templates	an as attractors	229
	12.6 Topological classification of str 12.7 Summary	ange attractors	230
	·		
1	13 The dynamics behind data		233
	13.1 Introduction and motivation		233
	13.2 Characterization of chaotic tim	e-series	234
	13.2.1 Imbeddings		235
	13.2.2 Dimensions		238 241
	13.2.3 Liapunov exponents		241 242
	13.2.4 Entropy 13.2.4.1 Probability er	atrony	242
	13.2.4.1 Probability en 13.2.4.2 Topological e		242
	13.3 Is this data set chaotic?	nu op y	244
	15.5 15 tins data set endotte:		- · · ·

	13.3.1 The well known enemies	245
	13.3.2 Testing the tests	247
	13.3.2.1 Testing with surrogate data	248
	13.3.3 Topological tests: how chaotic is our data set?	250
	13.4 Summary	251
14	Perturbative methods: averaging	253
	14.1 The perturbative problem	254
	14.1.1 The problem in standard form	254
	14.1.2 A first view of averaging	254
	14.2 A non-trivial example	256
	14.2.1 Rate equations for the laser with injected signal	256
	14.2.2 Averaged equations	257
	14.2.3 Fixed points and bifurcations	260
	14.3 The periodic case	263
	14.3.1 Bifurcations	268
	14.4 Perturbation of a Hamiltonian problem	268
	14.4.1 General position	270
	14.4.2 Resonant layer	271
	14.4.3 Perturbation of fixed points	273 274
	14.5 Perturbation of homoclinic loops	274 279
	14.6 Hopf bifurcation at a strong resonance	279
	14.6.1 The 1/3 resonance	281
	14.6.2 The 1/4 resonance	283 284
	14.6.2.1 Case $ A > 1$	284
	14.6.2.2 Case $ A < 1$	284
	14.7 Summary 14.8 Additional exercise	280
15	6 Bifurcations and symmetries	289 289
	15.1 Introduction	289 290
	15.2 Symmetries and groups	290 291
	15.3 Intensity patterns in lasers	293
	15.4 Symmetries and bifurcation theory: the tricks	293
	15.4.1 Symmetries and linear theory	294
	15.4.2 Invariant theory	290
	15.5 The treats 15.6 Revisiting the laser	300
		300
	15.7 Imperfect symmetries 15.8 Summary	302
	15.8 Summary 15.9 Additional exercises	303
10	6 Global bifurcations: II	307 307
	16.1 Introduction	307
	16.2 Homoclinic orbits of maps and flows	307

16.2.1 Manifold organization around a homoclinic orbit	308
16.2.2 Manifold organization around periodic orbits of flows	309
16.2.2.1 Intersection of manifolds	310
16.3 Homoclinic orbit in two-dimensional flows (to a fixed point)	311
16.4 Homoclinic orbit in three-dimensional flows (to a fixed point)	314
16.4.1 Homoclinic orbit with real eigenvalues	314
16.4.1.1 Parameter versus period plots	317
16.4.2 Homoclinic explosions: homoclinic orbit with symmetry	318
16.4.2.1 Local and global maps: a geometric approach.	319
16.4.3 Homoclinic orbit with complex eigenvalues	322
16.4.3.1 Parameter versus period plots in the Šilnikov	
phenomenon	324
16.4.3.2 The Šilnikov's scenario and horseshoes	326
16.5 The quest for homoclinic connections	327
16.5.1 Heteroclinic cycles in symmetric systems	328
16.5.2 Homoclinic orbits in the laser	329
16.5.2.1 Local and global maps	330
16.5.2.2 Homoclinic orbits and the Silnikov phenomenor	n332
16.6 Summary	333
References	335
Index	343

Preface

About the book

The aim of this book is to render available to readers the tools that nonlinear dynamics provides for the exploration of new problems in all fields of physics. In research we deal with open problems: problems for which, at the beginning, we have no solutions but at most a set of hunches, feelings and guesses based on our previous experience with other problems. From there, we work our path to the solutions (though we do not always succeed). In finding our way we take what seems to us the *most natural* approach just as we would bush-walk in the forest avoiding as much as possible the difficult paths in our hike towards an interesting place.

We will follow in the presentation the same procedure that we follow when doing research, i.e., we begin with the problem and find one path to the solution, we work inductively proposing new paths, checking them and redrawing our route according to the experience we gain in successive efforts.

We will avoid the temptation of selecting the problems according to the tools we possess. Rather, we prefer to construct the tools along with the problems. We sustain the idea that our tools (theories) and our problems evolve hand in hand. The best pages of physics have been written in this way. Consider for example the pairs calculus-mechanics (Newton) or Hilbert spaces-quantum theory (Von Neumann) and, as we will see, nonlinear dynamics-topology (Poincaré).

This is a book to be read with paper and pencil at hand. Our intention is to furnish readers with enough knowledge to be able to do research in nonlinear dynamics after having read the book (or better, *while* they are reading the book). We prefer to convey the key ideas within their mathematical framework rather than doing lengthy demonstrations. Therefore, the calculations around the results presented in the book are usually only sketched or left more or less as guided exercises.

At the end of the day, we would like the reader to finish this book with the feeling (or certainty) that, given enough time, she/he would have come up with the same answers to the problems as those we have shown (well . . . perhaps just better answers). After all *the answers are dictated by the problems*, the two of them evolve in interaction, and our task is to read them from nature.

About nonlinear dynamics

Nonlinear dynamics is a subject at least as old in physics as Newton's mechanics. The dynamics of the planetary system, a primary concern for Newton, Poincart and many others, turns out to be nonlinear in general, but fortunately the simplest examples can be solved exactly (two-body systems are completely integrable). In the context of Hamiltonian mechanics a completely integrable system is 'almost' a linear system in an appropriate set of coordinates (those given by the Hamilton-Jacobi theory for integrable systems [arno89]).

In contrast, three-body problems are also nonlinear, but in general very complex and non-integrable. It was while studying the three-body problem that **Poincaré** gave a new and important impulse to nonlinear dynamics at the beginning of the 20th century. However, the new physics of the atom (later the nucleus, then quarks, ...) caught the attention of physicists. There was apparently no use for nonlinear dynamics in quantum mechanics since the latter rests on Hilbert spaces (linear spaces after all). The excess of zeal with quantum mechanics caused the (almost complete) disappearance of nonlinear dynamics from physics and especially from textbooks.

The emergence of computers as new tools for theoretical physics in the late 1950s and early 1960s favoured a comeback of nonlinear dynamics. Numerical simulations made accessible to the intuition of physicists and non-physicists the richness of nonlinear models. The graphical output added an artistic touch.

Commensurate with its earlier neglect, the impact of the phenomenology of nonlinear dynamics rocked the physics community in the early **1980s**, to the point that people even talked of a 'new science' [glei87].

Today, we have a calmer perspective. We **recognize** that many situations can only be described with nonlinear interactions. There is a growing consciousness that the tools, methods and phenomenology of nonlinear dynamics will be increasingly necessary for the study of most subjects in physics and natural science in general.

The present text is far from being a complete guide to nonlinear dynamics but it covers the basic ideas for general systems. Some topics, though important for historical and even practical reasons for physicists, like one-dimensional maps and Hamiltonian mechanics, have not been emphasized, *on purpose*. We are certain that if we were to stress these special (singular) cases we would induce the wrong generalization, just as our generation was induced to think that Hamilton-Jacobi theory applied to all systems.

The discussion is presented in most cases having in mind low-dimensional systems, i.e., systems where the spatial aspects behave coherently. In general, spatio-temporal dynamics is known to a lesser degree than low-dimensional dynamics and the authors' knowledge of the subject is correspondingly more limited.