EXPERIMENTAL CRYOPHYSICS

Edited by

F. E. HOARE

Reader in Physics, University of Leeds

L. C. JACKSON

Professor of Physics, Royal Military College, Kingston, Ontario, Canada

N. KURTI

Reader in Physics, University of Oxford; Senior Research Fellow, Brasenose College, Oxford

Carlos Farristein

LONDON BUTTERWORTHS

1961

PREFACE

This volume is the result of a co-operative effort on the part of the editors and contributors to collect together discussions of many technical problems of interest to those working in the field of low temperature physics. Mathematical investigations related to design problems are given in sufficient detail to make the principles clear and so allow them to be applied to specific problems with ease. Experimental results quoted are those of interest in the design of apparatus and of experiments for low temperature investigations; no attempt is made to review results in this field as a whole. It is recognized that the selection of topics for inclusion, and the degree of detail with which they are treated, is unlikely to meet the requirements of all workers. However, the references throughout the book should prove to be good starting points in any literature search on related techniques. We hope, therefore, that these review articles will be of use not only to the newcomer to the field but also to the established experimental worker.

Since the word 'cryophysics' is so economically expressive, and has gained general acceptance since its first use (in this context see *Physics Today*, 1958, volume 11, No. 3, page 19), it was considered appropriate to adopt it in the title of the present work.

The preparation of the book has taken **much** more time than was expected when it was begun four years ago, and our sincere apologies are due to all the authors, and especially to those who made their contributions early. Thanks **to** their patient and good natured co-operation the **articles** were **revised** and added to at the proof stage, so that while **much** of the text and literature coverage dates from 1957, **some** important **recent** developments up to about 1960 could **also** be included.

The main topics of this book are listed in the table of contents. Some overlap between chapters was found to be unavoidable but it is hoped that this will neither cause confusion nor detract from the usefulness of the book. To facilitate crossreference an identification scheme for sections, equations, figures and tables has been adopted as follows. Three numbers are given in each case; the first is that of the chapter and the second refers to the main subdivision of the chapter. The final number refers to the further division of the text in the case of sections and in the others to the sequential numbering in the chapter; except for sections the final number is enclosed in brackets. The identification number of figures and tables are printed initalic type.

The chief **reason** for the **delay**, for which we, the **editors**, must take the blame, was our desire to make the book a homogeneous entity **in** which the several chapters and sections are similar **in scope** and character. We are deeply **grateful** to all our contributors for listening so patiently to our comments, and for adopting so graciously **many** of our suggestions.

Finally, we would like to **record** our appreciation of the great courtesy and forbearance shown to **us** by all of Butterworths, often **in** the most difficult circumstances.

THE EDITORS

Preface	• vii
List of Contributors	. xv
1. Low Temperature Laboratories F. E. Hoare	. 1
1. Introduction	. 1
2. Historical Sketch of Gas Liquefaction	. 2
3. The First Low Temperature Laboratories	. 3
4. The Leiden School	. 5
5. Later Low Temperature Laboratories .	. 6
6. The Design of a Low Temperature Laboratory .	. 7
7. Equipment and Supplies	. 12
2. THE MATHEMATICS OF GAS LIQUEFACTION AND LIQUEFIER	ł
D esign <i>F. E. Hoare</i>	. 14
1. Introduction	. 14
2. Outline of the Theory of Gas Liquefaction	. 14
3. The Pressure Drop for Fluids Flowing in Tubes	• 20
4. The Transmission of Heat to a Turbulent Fluid Stream	• 23
5. The Theory of Heat Exchangers	. 27
6. Forms of Heat Exchanger	. 29
7. Regenerators and Reversing Exchangers .	. 32
8. Bursting and Collapsing Pressures	. 33
3. LIQUID AIR PRODUCTION D. H. Parkinson	. 35
1. Introduction	. 35
2. Commercial Air Liquefaction	. 35
3. Rectification Columns and the Separation of Liquid Oxyge and Nitrogen	n . 41
4. Heat Exchangers and Regenerators	. 45
5. Expansion Engines for Air Liquefaction	. 46
6. Small Scale Liquefaction Plant	. 48
7. The Cascade Process for Liquid Air or Nitrogen	. 58
8. Liquid Air Conversion Apparatus	. 58
9. Other Uses of Expansion Engines	. 58
10. Liquid Air Supplies for the Laboratory .	. 59

4. T		e Production of Liquid Hydro D. H. Parkinson		
	1.	Introduction		. 62
	2.	Linde Hydrogen Liquefiers .		. 63
	3.	· · · ·		. 66
	4.	The Design of Liquefiers for Hydroge Expansion Engines		67
	5.	Practical Considerations in the Cons for Hydrogen or Helium	truction of Lique	
	6.	Fault Location in Liquefie	ers	79
	7.	Published Liquefier Designs .		. 81
	8.	The Desorption Method for Producing	Low Temperatu	res. 102
5.		NCILLARY EQUIPMENT FOR THE PROP Hydrogen and Liquid Helium A. \tilde{J}	JUCITON OI	QUID . 105
	1.	11	· ·	. 105
	2.	Gas Storage	• •	. 106
	3.	I mana a second	• •	
	4. r	Vacuum Pumps		110
	5.			. 112
	6. ~	8		
	7.	Safety		. 115
6. N		TERIALS AND METHODS FOR THE Low Temperature Apparatus A.	J. Croft .	. 1 1 8
	1.			. 118
	2.			
	3.			
		. Design and Construction of Low Ten		
	5. 6	To action of	nd Gauges	
	6. 7.	8	aterials	. 135 136
	1.	. Sources of Supply of M	ateriais	130
7. 5	Sтα	ORAGE AND TRANSFER OF LIQUEFIE	D GASES A. W	exler . 1 3 8
	1.	. Introduction		. 138
	2.	. Design of Liquid Helium Storage Ves	sels .	. 13
	3.		n of Liquid Hyd	rogen . 14
	4.	. Application to Storage Vessels for L Nitrogen	iquid Oxygen, A	ir and . 14

5.	Large Scale	e Storage	Ves	ssels					•		146
6.	Transport	Techniques							•		147
7.	Transfer o	of Liquefied	G	ases			•	•			148
8.	Liquid L	eve1 Indicato	ors					•			153
9.	Thermal	Oscillations								•	155
10.	Fabrication	Techniques for	Me	tal V	essel	s			•		157
11.	Low Tempe	erature Applicat	ions	of G	lass	Worl	king	Tec	hnic	ques	158
м	AGNETIC	C OOLING	E.	Men	doza					16	5

8.	M AGNETIC C OOLING E. Mendoza	165	5 •
	1. Introduction		165
	2. The Thermodynamics of Magnetic Cooling .		165
	3. The Design of Magnets		173
	4. Preparation of Paramagnetic Samples		180
	5. Design of Demagnetization Cryostats	•	182
	6. Temperature Inhomogeneities in Cold Salts .		187
	7. Thermal Contact to Paramagnetic Salts	•	191
	8. A Survey of the Salts Used for Magnetic Cooling		196
	9. Thermometers Below 1" K		202
	10. Systems of Stabilizing Temperatures Below 1" K		204
	11. Cascade Demagnetization and Other Applications of Therr Valves	mal	207
	12. Cooling Liquid *He in Open Containers .		209
9.	Low Temperature Thermometry R.P. Hudson	•	214
	1. Introduction		214
	2. The Gas Thermometer		214
	3. The Acoustic Thermometer		218
	4. Vapour Pressure Thermometry		219
	5. Resistance Thermometers		229
	6. Thermoelectric Thermometers		237
	7. The Measurement of Small Electromotive Forces		240
	8. The Nuclear Resonance Thermometer .		243
	9. Magnetic Thermometers		244

10.		RYOGE												
		TIONS		•	•	•	•	•	•	•	•	•	•	254
	1.	1	Acou	stic		Meas	surem	ents		<i>E</i> . <i>R</i> .	Dobl	bs.		. 254
	2.	Liquid	l Hy	dro	gen	Bubb	le Cl	namb	ers L	W	Alvar	ez .		258
							*							

CONTENTS	
3. Calorimetry R. W. Hill	264
4. Cryogenic Techniques for Irradiation Studies in Nuclear Reactors T. H. Blewitt and R. R. Coltman.	274
5. Isotopic Helium ³ He Darrell W. Osborne	284
6. Magnetic Measurements L. C. Jackson	290
7. Microwave Measurements D. M. S. Bagguley and \mathcal{J} . Owen	297
8. Optical Measurements L. Couture	304
9. Liquid Helium II <i>D. V. Osborne</i>	310
10. Thermal Conductivity Measurements R. Berman .	327
11. X-ray Methods at Low Temperatures E. R. Dobbs .	336
12. The Measurement of Mechanical Properties H. M. Rosenberg	343
A PPENDICES	349
Table 1. Approximate Thermal Data for Various Gases	349
Table 2. Thermal Conductivities of Some Constructional Materials	350
Table 3. The 1958 Liquid Helium 4 (*He) Vapour Pressure- TemperatureScaleScale	351
Table 4. Enthalpy of Gaseous Helium 4(4He).	359
Table 5. Entropy of Gaseous Helium 4 (*He) Joule deg ⁻¹ mole ⁻¹	360
Table 6. Density of Helium 4 (*He) Relative to that at 273.15" K and One Atmosphere Pressure . . .	361
Table 7. The Viscosity η_o , of Gaseous Helium 4 (*He) .	362
Table 8. The Thermal Conductivity, k_o , of Gaseous Helium 4 (*He)	362
Table 9. Liquid Helium 3 (³ He)—Vapour Pressures, mm Hg at 20"C, for 0.01"KTemperatureIntervals	363
Table 10. Enthalpy of Normal Hydrogen (n-H ₂).	364
Table ll. Density of Normal Hydrogen $(n-H_2)$ Relative to that at 273.15" K and One Atmosphere Pressure .	364
Table 12. Liquid Normal Hydrogen (n-H ₂)—Temperatures, °K, for Integral Values of Vapour Pressure in mm Hg at 20" C	366
Table 13. Solid Normal Hydrogen(n-H ₂)—Temperatures, °K, for Integral Values of Vapour Pressure in mm Hg at 20" C	367
Table20·4° K Equilibrium Hydrogen (e-H2)—Tempera- tures, °K, for Integral Values of Vapour Pressure in mm Hg at 02°C	367
Table 15. Liquid 20.4" K Equilibrium Hydrogen $(e-H_2)$ —Temperatures, °K, for Integral Values of Vapour Pressure in mm Hg at 20° C	368
Table 16. The Viscosity, η_o , of Gaseous Normal Hydrogen $(n-H_2)$. xii	369

Table 17. The Thermal Conductivity, k_0 , of Gaseous Normal Hydrogengen $(n-H_2)$	370
Table 18. Ideal Liquefaction Coefficients for Normal Hydrogen $(n\text{-}H_2)$ (Joule-Thomson Expansion)	370
Table 19. Liquid Nitrogen-Temperatures, [°] K, for Integral Values of Vapour Pressure in mm Hg at 20" C .	371
Table 20. Viscosity and Thermal Conductivity of Gaseous Nitrogen at One Atmosphere Pressure	371
Table 21. Liquid Oxygen-Temperatures, "K, for Integral Values of Vapour Pressure in mm Hg at 20" C	372
Table 22. The Debye Specific Heat as a Function of ${f T}/ heta$.	373
Table 23. The Debye Internal Energy as a Function of ${f T}/ heta$.	373
Table 24. Specific Heat Data for a Few Selected Metallic Elements	374
Graph. Thermomolecular Pressure Ratios for ³ He and ⁴ He	374
Author Index · · · · · · · · · ·	375

AUTHOR	INDEX	•	•	•	•	•	•	•	•	•	373
SUBJECT 2	NDEX	•	•	•	•	•	•	•	•	•	379