Índice de contenidos

Indice de contenidos Resumen						
1.	Intr	roducción	1			
	1.1.	Contexto	1			
		1.1.1. Generador de vapor del CAREM-25	1			
	1.2.	Mandrilado por expansión hidráulica	2			
	1.3.	Motivación y objetivo del trabajo	4			
2.	Car	eacterísticas de las uniones a estudiar	5			
	2.1.	Probetas que representan la unión mandrilada	5			
	2.2.	Diseños de placa tubo	6			
	2.3.	Zona Mandrilada	6			
	2.4.	Materiales de la unión	7			
		2.4.1. Inconel 690	7			
		2.4.2. Nitronic 50	9			
	2.5.	Inventario de probetas	9			
3.	Est	tudio experimental				
	3.1.	Ensayos de tracción a temperatura ambiente	13			
		3.1.1. Ensayo de tracción del Inconel 690	13			
		3.1.2. Ensayo de tracción del Nitronic 50	16			
	3.2.	Ensayos de tracción a alta temperatura	16			
		3.2.1. Ensayo de tracción 300 °C del Nitronic 50	16			
		3.2.2. Ensayo de tracción del Inconel 690 a 340 °C	17			
	3.3.	Determinación del coeficiente de fricción estático	18			
	3.4.	Inspección de las ranuras mediante imágenes	19			
		3.4.1. Inspección de la probeta con ranura de 0,4 mm	20			
		3.4.2. Inspección de la probeta con ranura de 0.2 mm	23			

	3.5.	Ensayo	os de pullout	24		
		3.5.1.	Pullout de probeta con ranura simple de 0,4 mm	24		
		3.5.2.	Pullout de probeta con ranura simple de 0,2 mm	26		
		3.5.3.	Pullout de probeta con ranura doble de 0,4 mm	26		
		3.5.4.	Pullout de probeta con ranura doble de 0,2 mm	26		
		3.5.5.	Síntesis de resultados de pullout a temperatura ambiente	28		
	3.6.	Ensayo	os de pullout a 340 °C	29		
4.	Mod	delado	numérico	31		
	4.1.	Modela	ado de las probetas	31		
		4.1.1.	Modelado de las ranuras	31		
	4.2.	Modela	ado de los materiales	33		
	4.3.	Modela	ado del contacto	35		
	4.4.	Steps		36		
		4.4.1.	Initial	36		
		4.4.2.	Mandrilado	37		
		4.4.3.	Relajación	37		
		4.4.4.	Calentamiento	38		
		4.4.5.	Pullout	38		
	4.5.	Mallad	lo	38		
		4.5.1.	Convergencia de malla	38		
5.	Res	ultados	s numéricos y discusión	41		
	5.1.	Result	ados numéricos de pullout a temperatura ambiente	41		
		5.1.1.	Resultado de pullout numérico para la probeta de una ranura y			
			0,4 mm de profundidad	41		
		5.1.2.	Resultado de pullout numérico para la probeta de una ranura y			
			0,2 mm de profundidad	42		
		5.1.3.	Resultado de pullout para la probeta de dos ranuras y 0,4 mm			
			de profundidad	42		
	5.2. Llenado de ranura					
	5.3.	1				
	5.4.	Pullou	t numérico a alta temperatura	47		
6.	Conclusiones					
Bi	bliog	rafía		51		
Ag	grade	ecimier	ntos	53		