Contents

Conventions

- xviii

PART A GEOMETRICAL PREREQUISITES FOR THREE-DIMENSIONAL CONTINUUM MECHANICS

CHAPTER 1 VECTORS, DETERMINANTS, AND MOTIVATION FOR TENSORS

3

- 1.1 Vectors in a Cartesian coordinate system, transformation of vector components, and the summation convention 3

 Projection 4 | Transformation of coordinates—Geometric approach 5 |

 Notation 6 | Vectors—Algebraic point of view 9 | Vectors—Geometric point of view 10 | Review of linear dependence 12
- 1.2 Determinants and the permutation symbol 14

 The permutation symbol 15 / Determinants 16 / The "ed" rule 20
- 1.3 The consistency requirement 23

 The consistency of Newton's second law 23 | Physical laws: General statement versus particular numerical version 24 | Guessing the tensor transformation law from the consistency requirement 25
- 1.4 The tensor as a linear transformation 28

 Linear transformations 28 | The stress tensor induces a linear transformation of differential area into differential force 29 | A linear transformation of differential area to differential force can be identified with the stress tensor 31

CHAPTER 2 CARTESIAN TENSORS

- 2.1 Tensor algebra 33
 - Definitions and elementary properties 34 / Special results for second order tensors 41 / Isotropic tensors 43 / The vector associated with an antisymmetric tensor 46

хi

2.2 The eigenvalue problem 49

Eigenvalues and eigenvectors of symmetric tensors 55 / Principal axes 57

2.3 The calculus of tensor functions 60 Theorems for derivatives of tensor fields 63 / Integral theorems 64 / Representation theorems 67

APPENDIX 2.1 Some basic equations of continuum mechanics 72

PART B PROBLEMS IN CONTINUUM MECHANICS

CHAPTER 3 VISCOUS FLUIDS

3.1 The Navier-Stokes equations 78

Analysis of the local velocity field 78 | Assumptions that underlie the constitutive equation 80 | Derivation of the final equations 82 | Boundary conditions 85 | Incompressible viscous flow 86

3.2 Exact solutions 93Solution 1: Plane Couette flow 93 / Solution 2: Plane Poiseuille flow 95 / Solution 3: Rayleigh impulsive flow 98

3.3 On boundary layers 105

Comparative magnitudes of viscous and inviscid terms 105 / Reynolds

number 107 / Boundary layer equations for steady flow past a flat plate 107 /

Boundary conditions 111

3.4 Boundary layer flow past a semi-infinite flat plate 115

Formulation 116 | Blasius similarity solution 116 | Defects in the Blasius solution 118 | Boundary layer separation 120 | Slightly viscous uniform flow past streamlined bodies 121 | Slightly viscous uniform flow past bluff bodies 122

3.5 Vorticity changes in viscous fluid motion 129

Vorticity convection and stretching 129 | Viscous vorticity diffusion and boundary generation 131 | Vorticity in two-dimensional flows 132 | Vorticity in particular viscous flows 132 | Summary of the role of vorticity 134

3.6 Slow viscous flow past a small sphere 135 Formulation 136 / Solution 137

APPENDIX 3.1 Navier-Stokes equations in cylindrical coordinates 138

APPENDIX 3.2 Generation of confidence in the boundary layer equations by construction of a finite difference scheme for their solution 139

CHAPTER 4

Contents

FOUNDATIONS OF ELASTICITY

4.1 Analysis of local motion 144

Strain tensor in material coordinates 144 | Geometrical interpretation of strain components 147 | Strain tensor in spatial coordinates 149 | The rotation tensor 150 | Principal axes of strain 151 | Compatibility equations 153 | Some

examples of strain 155

4.2 Hooke's constitutive equation and some exact solutions 159

Generalized Hooke's law 159 | Interpretation of the elastic coefficients via exact solutions 162 | Tension of a cylindrical bar 163 | Shear of a rectangular bar 164 | Compression of a rectangular parallelepiped 166

4.3 Final formulation of the problem of linear elasticity 168

Summary of general equations, boundary conditions, and initial conditions 169 |

Navier's equations 171 | Beltrami-Michel equations 171

4.4 Energy concepts and the principle of virtual work 174

Energy balance 174 / Principle of virtual work 177 / Uniqueness theorems 178 /
Potential energy minimization in equilibrium 179

4.5 Some effects of finite deformation 184

Kinematics 184 / Comparison with linear theory 187 / A constitutive equation for nonlinear elasticity 188 / Simple shear 189

CHAPTER 5 SOME EXAMPLES OF STATIC PROBLEMS IN ELASTICITY

5.1 Bending of beams 194

Bending by terminal couples: Formulation 194 | Solution 196 |

Interpretation 199 | Introduction to the engineering theory of bending—Basic assumptions 200 | Equations of engineering bending theory 204 | Boundary conditions 208 | Traveling-wave solutions 210 | Buckling of a beam 212 |

Variational methods in elasticity 214

5.2 St. Venant torsion problem 219 Warping function 220 | Stress function 224 | Further properties of the stress function 226 | Modified stress function 229 | Rectangular cross section 230 | Elliptical cross section 233 | St. Venant principle 235

5.3 Some plane problems 240

Equations for plane strain 241 | Airy's stress function 241 | Boundary conditions 242 | Polar coordinates 245 | Kirsch problem: Stress concentration 248 | Plane stress 250 | Generalized plane stress 252 | Concluding remarks 255

CHAPTER 6

INTRODUCTION TO DYNAMIC PROBLEMS IN ELASTICITY

- 6.1 Elastic waves in unbounded media 259

 Dilatational and rotational wave equations 259 / Waves via the Helmholtz representation 260 / Plane wave solutions 261
- 6.2 Propagation of discontinuity surfaces 264

 A condition on mild discontinuities 265 | Further jump conditions 266 | Solving for discontinuity velocities 269 | Orientations of discontinuity surfaces 270
- 6.3 Reflection of plane shear waves 271

 Formulation 272 | Attempted solution with a reflected wave 273 | Additional reflected wave 274 | Interpretation of results 276
- 6.4 Elastic surface waves 278

 Formulation 278 | Solution: Plane waves that decay with depth 279 | Analysis of the solution 281 | Occurrences of Rayleigh waves 283
- 6.5 Internal reflection 285
- 6.6 Love waves 289

 Formulation and solution 290 | Examination of the nature of dispersion 293 |

 Further characteristics of the solution 294 | Concluding remarks 295

PART C WATER WAVES

CHAPTER 7

FORMULATION OF THE THEORY OF SURFACE WAVES IN AN INVISCID FLUID

- 7.1 Boundary conditions 301

 Kinematic boundary condition 301 | Basic facts about surface tension 303 |

 Quick derivation of a dynamic boundary condition 304 | Detailed derivation of the dynamic boundary condition for an inviscid fluid 305 | Forces on a surface element 308 | Consequences of local equilibrium 313
- 7.2 Formulation and simplification 319

 Equations for two-dimensional waves in an infinitely wide layer of inviscid fluid 320 | Static and dynamic pressure 322 | Nondimensionalization 324 | Linearization 326
- 7.3 Order-of-magnitude estimates, nondimensionalization, and scaling 327

 Estimating the size of terms in equations governing water waves 328 / Scaling 329 / Use of dimensionless scaled variables 331 / Pressure scale 332

CHAPTER 8

SOLUTION IN THE LINEAR THEORY

- 8.1 A solution of the linearized equations 335

 Assumption of a solution of exponential type 335 | Verification that all conditions are satisfied 336 | Return to dimensional variables 339 | Interpretation of the solution 340
- 8.2 Initial value problems: Periodic cases 346

 Superposing solutions of exponential type 346 | Another way to write the real part of complex sums 349 | Satisfying initial conditions 352
- 8.3 Aperiodic initial values 354

 Abandoning dimensionless variables 354 | Solution via Fourier integrals 355 |

 A qualitative feature of the solution 359 | Superposition and the delta function 360

APPENDIX 8.1 Bessel functions 365

CHAPTER 9 GROUP SPEED AND GROUP VELOCITY

- 9.1 Group speed via the method of stationary phase 369

 Need for an asymptotic approximation 369 | Stationary-phase
 approximation 369 | Application of the approximation 370 | Interpretation:
 Group speed 374 | Phase speed 375 | Special conditions near extrema of group speed 377 | Some applications to flow past obstacles 378
- 9.2 Experiments and practical applications 381

 Experiments on the collapse of a rectangular bump of water 382 / Comparison of theory and experiment 384 / Practical application of theory 388
- 9.3 A kinematic approach to group velocity 391

 Properties of slowly varying wave trains 392 | The phase function in regions with an unvarying number of waves 393 | Integral and differential expressions of wave conservation 395 | Group and phase velocity 396 | Energy propagation 397 | Asymptotic form of the surface: A terse derivation 398
- 9.4 Ship, duck, and beetle waves 401

 Consequences of steady motion 403 / Steady waves induced by a point source 404 / Partial differential equation for the phase function 408

APPENDIX 9.1 The method of stationary phase—An informal discussion 412

Motivation 412 | Development of a theorem 414 | Heuristic derivation of the key approximation 415 | Generalization 416

CHAPTER 10

NONLINEAR EFFECTS

- 10.1 Formation of perturbation equations for traveling waves 418

 Change of variables 419 / Consequence of traveling-wave assumption 420 /
 Series solution 421 / Determination of successive sets of equations 422 /
 Remarks 425
- 10.2 Traveling finite-amplitude waves 426

 Lowest order equations 426 | Second order equations 428 | Normalization 430 |
 Completion of second order calculations 431 | Third order calculations 432 |
 Discussion 434 | Resonant case 436 | Near resonance 438 | Special resonant solutions to compare with experiment 439 | Recapitulation 441 | Final remarks—Formalism and rigor 442

PART D VARIATIONAL METHODS AND EXTREMUM PRINCIPLES

CHAPTER 11 CALCULUS OF VARIATIONS

- 11.1 Extrema of a function—Lagrange multipliers 447

 Unconstrained extremalization of a function 448 / Constrained extremalization of a function 450 / Inequality constraints 455
- 11.2 Introduction to the calculus of variations 461

 The brachistochrone 461 | A general extremalization problem 462 | The Euler equation 463 | Natural boundary conditions 467 | Are solutions to the Euler equation extremals? 471
- 11.3 Calculus of variations—generalizations 476

 A. More derivatives 476 | B. More functions 477 | C. More independent variables 478 | D. Integral constraint 479 | E. Functional constraint 481 | F. End point free to move on a given curve 483

APPENDIX 11.1 Lemma A 496

APPENDIX 11.2 Variational notation 497

CHAPTER 12

CHARACTERIZATION OF EIGENVALUES AND EQUILIBRIUM STATES AS EXTREMA

12.1 Eigenvalues and stationary points 500

Three stationary value problems 500 / A particular self-adjoint positive problem 502

12.2 Eigenvalues as minima and the Ritz method 504
Motivation 504 Specification of a linear operator 508 The lowest
eigenvalue 509 Higher eigenvalues 510 The Ritz method 513 Validity
and utility of the Ritz method 515 Generalization 517 Example: Transvers
vibrations of a tapered hollow beam 518 / Natural boundary conditions 521

- 12.3 The Courant maximum-minimum principle 528

 A problem in vibration theory 528 / The max-min principle 529 / Application to the Ritz method 531
- 12.4 Minimal characterization of linear positive problems 533

 Particle equilibrium as a minimum of potential energy 534 / The loaded membrane 537 / Equivalence of an inhomogeneous equation and a minimization problem 539 / The Ritz method applied to the torsion problem 541

APPENDIX 12.1 Self-adjoint operators on vector spaces 546

Real vector spaces 547 | Scalar products 549 | Linear self-adjoint
operators 551 | Eigenvalue problems 552 | Positive operators 554 |
Orthonormal elements 556 | Inhomogeneous problems 558 | The adjoint 560 |
Banach and Hilbert spaces 562 | Completely continuous operators 563

BIBLIOGRAPHY	571
HINTS AND ANSWERS	579
INDEX	585