CONTENTS

I.	GENERAL INTRODUCTION	1
	A. Nuclear paramagnetism	1
	B. Special features of radio-frequency spectroscopy	3
	C. The phenomenon of resonance; 'resonant' and 'non-resonant' methods	4
	(a) Beam measurements of atomic, molecular, and nuclear magnetic moments	5
	(b) Measurement of the magnetic moment of the neutron	6
	(c) The fine structure of the hydrogen atom	7
	(d) The fine structure of positronium	8
	(e) The magnetic moment of the μ -meson	9
	(f) Resonance detected by optical means	10
	(g) Perturbed angular correlations	11
	D. Nuclear magnetic resonance	13
	(a) The principle	13
	(b) Various extensions and generalizations	15
RE	FERENCES	17
II.	MOTION OF FREE SPINS	19
	A. Classical treatment	19
	B. Quantum mechanical treatment	22
	C. Quantum mechanical description of a statistical ensemble of free spins. Density matrix	24
	D. Relation with the perturbation method	27
	E. Transient effects	32
	(a) Free precession	32
	(b) Spin echoes	33
	(c) The adiabatic theorem, adiabatic passage	34
	F. The general problem of two levels coupled by an r.f. field. The fictitious spin ½	36
RE	FERENCES	38
III	. MACROSCOPIC ASPECTS OF NUCLEAR MAGNETISM	39
	I. Introduction	39
	A. Static susceptibility	39
	B. Resonant absorption of r.f. energy	40
	II. THE PHENOMENOLOGICAL EQUATIONS OF BLOCK	44
	A. Steady-state solutions—saturation	45
	B. Steady-state solutions in an inhomogeneous field	49
	C. Modified Bloch equations in low fields	53

CONTENTS

	III. TRANSIENT METHODS IN NUCLEAR MAGNETISM	57
	A. The method of the spin echoes	58
	(a) Spin diffusion	59
	(b) Coherent and incoherent pulses	62
	B. Free precession	63
	(a) Free precession in the earth's field	64
	C. Adiabatic passage	65
	Applications of the fast-passage methods	66
	(a) Measurement of the relaxation time T_1	66
	(b) Measurement of T_2 in liquids	67
	(c) Other applications of adiabatic fast passage	68
	D. The method of transient nutation	68
	IV. DETECTION METHODS	71
	A. General	71
	B. Detection of steady-state nuclear signals	75
	(a) Q-meter detection	75
	(b) Bridge and crossed coils methods	76
	(c) Marginal oscillator	77
	(d) Audio-modulation, narrow band amplification, phase sensi-	
	tive detection, signal-to-noise ratio	78
	(1) Lock-in detection and signal-to-noise ratio	79
	(2) Signal-to-noise ratio	82
	(e) Transient effects in steady-state detection	85
	C. Transient methods of detection	86
	(a) Adiabatic fast passage	86
	(b) Pulse methods, coherent and incoherent pulses	87
	D. Negative absorption—masers	89
	APPENDIX. Proof of the Kramers-Krönig relations	93
RE	FERENCES	96
IV.	DIPOLAR LINE WIDTH IN A RIGID LATTICE	97
	I. Introduction	97
	A. The local field	97
	B. General theory of magnetic absorption	98
	II. BROADENING BY LIKE SPINS	103
	A. Dipole-dipole interaction	103
	B. Definition of the moments	106
	C. Principle of the calculation of moments	108
	D. Calculation of the second and fourth moments	111
	E. Relationship between the line shape and the free precession signal	114
	F. A comparison between theory and experiment	115
	III DIROTAR BROADENING BY HALLER SRING	199

CONTENTS	xi
IV. DIPOLAR BROADENING IN MAGNETICALLY DILUTED	
Substances *	125
A. The method of moments	125
B. The statistical theory	126
V. Modifications in the Dipolar Broadening caused	
BY THE EXISTENCE OF QUADRUPOLE COUPLINGS	128
REFERENCES	132
V. SPIN TEMPERATURE	133
A. Non-interacting spins	133
B. Interacting spins in high field	136
C. Interacting spins in low fields	144
D. Zeeman system with more than one spin species	150
E. Dynamics of thermal spin-spin processes	154
REFERENCES	158
VI. ELECTRON-NUCLEUS INTERACTIONS	159
I. ELECTROSTATIC COUPLINGS	159
A. The Hamiltonian	159
B. Ionic crystals	166
C. Molecular crystals	169
II. MAGNETIC INTERACTIONS	170
A. The coupling Hamiltonian	170
B. The effect of electron-nucleus coupling in diamagnetic substances	173
(a) General	173
(b) Calculation of the chemical shift	175
(c) Indirect interaction between nuclear spins in diamagnetic substances	183
(1) The orbital coupling	184
(2) The Heitler-London approximation	186
(3) The method of molecular orbitals	190
C. The effect of electron-nucleus coupling in paramagnetic substances	191
(a) Non-metals	191
(1) Nature of the coupling	191
(2) Observability of nuclear resonance	193
(b) Metals	199
(1) The frequency shift in metals	199
(2) The indirect interactions in metals	206
D. Nuclear resonance in antiferromagnetic and ferromagnetic	
substances	210
REFERENCES	214

CONTENTS	xiii
----------	------

VII. FINE STRUCTURE OF RESONANCE LINES—	
QUADRUPOLE EFFECTS	216
I. FINE STRUCTURE CAUSED BY DIPOLAR COUPLING	216
A. Rigid lattice	216
(a) Two identical spins (two protons) I^1 and I^2	216
(b) Systems of more than two spins	222
B. Nuclear resonance in solid hydrogen	223
(a) Introduction. System of two interacting protons	223
(b) Solid hydrogen	225
(c) Ortho- and para-hydrogen	226
(d) Crystalline potential	227
(e) Magnetic resonance in a strong field	228
(f) Magnetic resonance in zero field	231
(g) Magnetic resonance in HD and D_2	231
II. ENERGY LEVELS OF NUCLEAR SPINS IN THE PRESENCE	1
OF QUADRUPOLE INTERACTIONS	232
A. High magnetic fields	233
(a) Energy levels in single crystals	233
(b) Imperfect cubic crystals	237
(1) Powder pattern	237
(2) First-order broadening in imperfect crystals	237
(3) Transient methods, multiple echoes	241
(4) Second-order quadrupole broadening in imperfect crystals	246
B. Low magnetic fields	249
(a) Zero field spectra	249
(1) Integer spins	250
(2) Half-integer spins	251
(b) Zeeman splittings of quadrupole levels	253
(1) Integer spins	253
(2) Half-integer spins	254
(c) Transient methods	257
(1) Transient magnetization in zero field	257
(2) Transient magnetization in a small magnetic field H_0	260
APPENDIX. Sign of the quadrupole coupling	261
REFERENCES	263
VIII. THERMAL RELAXATION IN LIQUIDS AND GASES	264
I. Introduction	264
A. Coupling of the nuclear spins with the radiation field	264
B. Coupling of the spin system with the lattice	267
II. RELAXATION IN LIQUIDS AND GASES	268
A. General	268
B. Definitions	270

•	
C. Motion of a system subject to a perturbation which is a random function of time	272
(a) Transition probability	272
(b) The master equation for populations	274
(c) The master equation for the density matrix	276
(d) The master equation in operator form	278
(e) Macroscopic differential equations	280
(f) Summary of the notation introduced in this section	281
(g) Justification of the four assumptions leading to the generalized	
master equation	282
D. Quantum mechanical formulation of the problem	283
E. Relaxation by dipolar coupling	289
(a) Like spins	290
(b) Unlike spins	294
(c) Correlation functions resulting from random molecular rota-	
tion or translation	297
(1) Rotation	298
(2) Translation	300
F. Other mechanisms of relaxation in liquids	305
(a) General	305
(b) (1) Scalar spin-spin coupling	306
(2) Scalar relaxation of the first kind	308
(3) Scalar relaxation of the second kind	309
(c) Quadrupole relaxation in liquids through molecular reorienta- tion	313
(d) Relaxation through anisotropic chemical shift combined with molecular reorientation	315
G. Nuclear relaxation in gases	316
(a) The H_2 molecule—diatomic molecules	316
(b) Relaxation in monatomic gases	322
III. COMPARISON BETWEEN THEORY AND EXPERIMENT	323
A. Dipolar coupling between like spins	324
(a) Short correlation times, relative values of T_1	324
(b) Absolute values of T_1	326
(c) Long correlation times	327
B. Coupling between unlike spins	328
(a) Single irradiation methods	328
(b) Double irradiation methods	333
• •	333
(2) Coupling between a nuclear spin and an electronic spin	338
1	346
D. Nuclear relaxation in gases	349
'(a) Nuclear relaxation in hydrogen gas	349

xiv	CONTENTS		
	(b) Nuclear relaxation in liquid hydrogen	350	
	(c) Relaxation in monatomic gases	352	
	FERENCES	353	
4013			
IX.	THERMAL RELAXATION AND DYNAMIC POLARIZA- TION IN SOLIDS	354	
	I. CONDUCTION ELECTRONS AND SPIN-LATTICE RELAXATION	r	
	IN METALS	355	
	A. An elementary calculation of the relaxation time	356	
	B. Nuclear relaxation time and spin temperature	359	
	C. Dynamic nuclear polarization in metals (the Overhauser effect)	364	
	(a) Fermi statistics and non-equilibrium electron spin distribution	364	
	(b) Dynamic polarization	367	
100	(c) Coupled equations for nuclear and electron spin polarization	368	
	D. Comparison with experiment	370	
	(a) Measurements of T_1	370	
	(b) Dynamic polarization experiments	373	
*	(c) Dynamic nuclear polarization in metals at the temperatures of liquid helium	364 364 367 368 370 370 373	
	II. NUCLEAR RELAXATION CAUSED BY FIXED PARAMAG-		
	NETIC IMPURITIES	378	
	A. Theory	379	
	B. Comparison with experiment	386	
	III. MAGNETIC RELAXATION AND DYNAMIC POLARIZATION IN SEMICONDUCTORS AND INSULATORS	389	
	A. Relaxation by conduction electrons in semiconductors	389	
	B. Dynamic polarization by fixed paramagnetic impurities—solid state	900	
	effect	392	
	IV. RELAXATION BY THERMAL VIBRATIONS IN A CRYSTAL-		
	LINE LATTICE	401	
	A. Lattice vibrations and phonons	402	
	B. Transition probabilities induced by the spin-phonon coupling	404	
	C. Magnetic and quadrupole relaxation by spin-phonon coupling	409	
	(a) Magnetic relaxation	409	
	(b) Quadrupole relaxation	411	
	D. Ultrasonic experiments	417	
	(a) Quadrupole transitions	419	
	(b) Magnetic transitions	421	
REF	ERENCES	423	
	THEORY OF LINE WIDTH IN THE PRESENCE OF		
N	OTION OF THE SPINS	424	
	I. Introduction	424	

II. THE ADIABATIC CASE	427
A. General theory	427
B. Exchange narrowing	435
C. Brownian motion narrowing	439
III. THE NON-ADIABATIC LINE WIDTH	441
A. Line width and transverse relaxation time	441
B. General case	442
IV. DESTRUCTION OF FINE STRUCTURES THROUGH MOTION	447
V. Influence of Internal Motions in Solids on the Width and Relaxation Properties of Zeeman Resonance Lines	451
A. Rotational motions	451
B. Translational diffusion in solids	458
VI. INFLUENCE OF INTERNAL MOTIONS IN SOLIDS ON THE	400
WIDTH AND RELAXATION OF QUADRUPOLE RESONANCE LINES	467
A. Torsion oscillations	468
(a) The spin Hamiltonian	468
(b) The line width	470
(c) Relaxation time	472
(d) The spectral densities	473
B. Hindered rotations	474
(a) Fast motion	474
(b) Slow motion	477
REFERENCES	479
XI. MULTIPLET STRUCTURE OF RESONANCE LINES	
IN LIQUIDS	480
I. ENERGY LEVELS OBSERVED BY CONTINUOUS WAVE	
METHODS	480
A. $J \ll \delta$	482
B. J and δ comparable for two spins $\frac{1}{2}$	484
C. J and δ comparable, for two groups G and G' of p equivalent spins i and p' equivalent spins i' , respectively	488
D. Perturbation method	489
E. Isochronous non-equivalent spins	491
II. MULTIPLET SPECTRA OBSERVED BY TRANSIENT METHODS	495
A. The method of free precession	495
B. The method of spin echoes	497
III. LINE WIDTH PROBLEMS IN MULTIPLET SPECTRA	501
A. Effects of quadrupole relaxation and chemical exchange	501
B. Effects of magnetic relaxation	506
REFERENCES	510

CONTENTS

XII. THE EFFECTS OF STRONG RADIO-FREQUENCY	
t FIELDS	511
I. STRONG RADIO-FREQUENCY FIELDS IN LIQUIDS	511
A. 'Non-viscous liquids'	511
B. 'Viscous liquids'	517
C. Bloch equations for a 'simple' line	522
D. Decoupling of spins through 'stirring' by a radio-frequency field	527
(a) Introduction	527
(b) The intermediate pattern (elementary theory)	530
(c) The intermediate pattern (detailed theory)	533
II. STRONG RADIO-FREQUENCY FIELDS IN SOLIDS	539
A. Introduction	539
B. Spin temperature in the rotating frame, reversible fast passage	545
C. Spin temperature in the rotating frame, steady-state solutions	555
D. Spin-lattice relaxation in the rotating frame	560
(a) Relaxation for a single spin species	560
(b) Relaxation in the presence of two spin species	562
E. Double irradiation methods	566
(a) Rotary saturation	566
(1) Rotary saturation in liquids	566
(2) Rotary saturation in solids	569
(b) Line narrowing by double frequency irradiation	570
(c) Transient methods of double irradiation	578
REFERENCES	580
INDEX OF NUCLEAR SPECIES	583
SUBJECT INDEX	591