Contents

			Conceine
Preface .	xiii		
Prologue	The watch	1	

1 The chase 6

Vision is dynamic 8

Eye movements catch images and hold them steady on the retina 9
Saccadic and smooth eye movements are used to catch and hold images 10
The image of the visual world is always moving on the retina 11
Image motion elicits smooth pursuit 11
What we see doesn't move when we move our eyes 12
Orientation and transition 14

The neural substrate 14

Orientation and transition 16

Catching the light 17
Orientation and transition 19

2 Eyes 20

The eyes of all vertebrates show a common structural plan 22

The interior of the eye can be viewed with the aid of a simple optical device 22

SIMILARITIES AND DIFFERENCES 23

Most eyes are specialized to view either a point, or the visual horizon, or a mixture of both 26

RETINITIS PIGMENTOSA 27
THE RETINA IS NOURISHED ON BOTH SIDES 28

The left brain views the right visual field 31 FUNDI OF CHEETAHS AND GAZELLES 32

3 Retinas 36

Retinal structure 38

The retina is layered 38
The retina is a neural circuit composed of different cell classes 39
The retina detects and compares 40
Cones concentrate in the fovea 42

A brief functional walk through the retina 43

VISUALIZING SINGLE NEURONS 44

Photoreceptors 44

Horizontal cells 45

Bipolar cells 50

Amacrine cells 53

Ganglion cells 53

The basic circuitry throughout the retina is the same 55

INTERLUDE Size 57

Numbers and units 57

Scientific notation 57

SI units 57

Matters of scale 60

Summary 65

Logarithmic scales 65

4 The rain of photons onto cones 68

We see a star when its photons activate our neurons 70

Heated bodies radiate photons over a range of frequencies 70

PHOTONS ARE PARTICLES OF LIGHT 72

Some photons are lost in passing through the eye 73 LOOKING AT SPECTRAL DENSITY CURVES 74 PHOTONS ARRIVE ONE BY ONE 77

Why the lens and macula contain light-absorbing pigments 77

The image of a point of light is spread over many cones 78

The image of a point of light characterizes the optical properties of the eye 78

The peak of the image approximates the size of a single cone 80

The capture of photons by cones depends upon their direction and frequency 82

An absorbed photon must activate a visual pigment molecule 85

The principle of univariance captures what photoreceptors respond to 86

INTERLUDE Neurons 89

Water molecules are polar 89

Cell membranes block the movement of polar molecules 90

Separation of charge across the cell membrane produces a voltage 91

Charge separation tends to be distributed uniformly across the cell membrane 92

lons can pass through aqueous pores in the cell membrane 94

Neural communication depends upon voltage-gated ionic

Pumps use metabolic energy to move ions up energy gradients 96

Exchangers use the energy gradients of some ions to move other ions up their energy gradients 96

Synapses are sites of communication between neurons 97

> Chemical synapses involve the release and detection of a neurotransmitter 97

Gap junctions provide sites of intracellular continuity between cells 99

Ribbon synapses occur at sites of continuous neurotransmitter release 100

5 A cone pathway 102

A change in photon capture causes a change in neurotransmitter release 104

Pathways from cones to ganglion cells 106

Each cone contacts a few hundred processes of bipolar and horizontal cells 106

Horizontal cells antagonize cones 109

The response of a bipolar cell depends upon the types of contact it makes 110

Bipolar cells are presynaptic to both amacrine and ganglion cells 111

Amacrine cells provide feedback and thus complexity 112

Ganglion cell dendrites are always postsynaptic 114

We see a star when its photons activate our neuronsconcluded 115

Neural messages depend upon an increase in firing rate 116

Each type of parasol cell tiles the retina 118

We see Polaris by means of messages conveyed by arrays of parasol cells 118

The axons of parasol cells go to the magnocellular portion of the LGN 119

6 The rain of photons onto rods 122

Away from the fovea, the retina is dominated by rods 124 VISUAL ANGLE AND RETINAL ECCENTRICITY 125 CALCULATING THE ROD PHOTON CATCH 126

Rods contact a single type of bipolar cell 126

Rod bipolar cell axons make contacts in the innermost portion of the inner synaptic layer 129

All amacrine cells convey the rod signal to cone bipolar cells 129

Viewing Polaris with your rod pathway 132 STELLAR MAGNITUDES 133

7 Night and day 134

Rods reliably signal the capture of single photons 136

The advantage of a reliable response to a single photon is enormous 136

Dim lights are noisy 137

ESTIMATING VARIATION 140

Rods are noisy 140

Rods saturate 143

Rods have a limited dynamic range 143

Rod bipolar cells receive a compressed rod input 144

Cones are adapted for daylight vision 146

Cones can signal the capture of single photons, but are noisier than rods 146

Cones do not saturate to steady light levels 147

Why rods and cones? 147

INTERLUDE Plotting light intensity 151

The range of light intensities in the environment is enormous 152

Rod photon catch 154

Cone photon catch 154

8 How photoreceptors work 158

How a rod responds to a single photon 161

Photoactivation 161

Biochemical cascade 163

NUCLEOTIDES 164

R* activates many G molecules 166

Channel amplification results from multiple binding sites for cG 168

The effect of R* extends over 20% of the length of the outer seament 169

The electrical response to an absorbed photon is a photocurrent 171

Electrotonic spread 173

THINKING MORE DEEPLY ABOUT CURRENT FLOW 174

Synaptic deactivation 175

CALCIUM ENTRY 175

Decrease in glutamate concentration 176

Summary of the rod response to a single photon 176

How rods and cones respond to many photons 177

The photocurrent response to a flash is predictable from the single-photon response 177

Cones are similar to rods 178

Cones can convey the absorption of a single photon 180

Voltage-gated channels shape the response 181

The flash response predicts the response to other light intensity changes 181

How rods and cones respond at different light levels 182 The sensitivity of rod vision is much lower than that of

individual rods 183 Rods saturate at bright light levels but cones do not 184

Photoreceptors generate spontaneous photonlike events 186

INTERLUDE Rhodopsins 188

Rhodopsins are ancient 190

Point mutation in rod rhodopsin can lead to retinitis pigmentosa 192

9 Retinal organization 194

Is there a theory of retinal structure and function? 196

Neural interactions 197

Chemical messengers 197

Cell coupling 198

Disposition of cells 198

CONTINUITY AND CONTIGUITY 199

Coverage 200

Tiling and territorial domains 201

The nasal quadrant of the retina has a higher density of

Differential retinal growth and cell birth dates shape spatial density 204

EQUIVALENT ECCENTRICITY 205

Formation of the fovea produces radial displacement in cell connections 206

The inner synaptic layer shows different forms of stratification 208

> Synapses between retinal cells may follow simple rules 208

10 Photoreceptor attributes 210

Photoreceptor inner segments contain the metabolic machinery 212

Photoreceptor outer segments are continually renewed 212

Photoreceptors contain a circadian clock 214 FRUIT FLY CLOCKS 215

S cones differ from M and L cones in a number of ways 216

Most mammals are dichromats 217

The genes for M and L cone rhodopsins lie together on the X chromosome 219

The difference between M and L cones is recent 221

In some New World monkeys only females are trichromats 222

11 Cell types 224

Cell types can be distinguished by the lack of intermediate forms 226

ARTIFICIAL CELL TYPES 230

Horizontal cells 231

Bipolar cells 235

Midget bipolar cells 236

S cone bipolar cells 239

Diffuse cone bipolar cells 241

Giant bipolar cells 242

Amacrine cells 242

Starburst amacrine cells 243

Dopaminergic amacrine cells 247

A1 amacrine cells 252

Ganglion cells 255

Midget and parasol ganglion cells dominate the primate retina 256

Midget ganglion cells 257

CELLS SIMILAR TO MIDGET AND PARASOL GANGLION

CELLS ARE FOUND IN OTHER SPECIES 258

Parasol ganglion cells 260

Parasol ganglion cells are coupled to two types of

amacrine cells 261

Small bistratified ganglion cells compare S cones with M and L cones 263

Biplexiform ganglion cells receive directly from rods 264

12 Informing the brain 266

Brain evolution guides retinal evolution 268

Ganglion cell axons terminate in many different sites in the brain 268

Ganglion cell types and their central projections are fundamental 268

Suprachiasmatic nucleus 270

IDENTIFICATION OF GANGLION CELL DESTINATIONS BY MEANS OF RETROGRADE TRANSPORT 271

Accessory optic system 271

Superior colliculus 273

Pretectum 278

Pregeniculate 279

PREGENICULATE HOMOLOGS 280

Lateral geniculate nucleus 280

The lateral geniculate nucleus is composed of twelve distinct sublayers 281

VIEWING DIFFERENT PORTIONS OF YOUR VISUAL FIELD 281

The striate cortex contains a retinotopic map of the visual field 283

The signals from the two eyes are segregated into ocular dominance bands 284

The striate cortex is vertically layered 285

Messages from different ganglion cell types go to different portions of the striate cortex 286

13 Looking 292

What does the visual system need? 294

The visual system needs time 294

The visual system needs retinal information to stabilize the image 295

The visual system needs to map the image to the external world 295

The geometry of gaze 297

Head movements come first 297

Eye movements depend upon viewing distance 298

How the eyes are moved 299

Six muscles turn the eye 299

Eye muscle pairs are reciprocally innervated 299 RABBIT VISION 301

Eye orientation is aligned with the visual horizon 302

The vestibular apparatus provides information about head position and motion 303

LIVING WITHOUT A BALANCING MECHANISM 306

Saccades 306

Saccades are typically small 308 Saccades have limited positional accuracy 309

Intersaccadic intervals are often brief 309

Large changes in gaze combine eve and head movements 311

Movements of the head, eyes, and image 311

The head is in constant motion 311

The retinal image is in constant motion 314

Smooth eye movements track stationary targets 317

Stabilized images disappear 318

Retinal circuitry assists eye movements 318

Some retinal ganglion cell types are specialized to detect image motion 319

Rabbit on-off direction-selective cells are aligned with the eye muscles 319

Rabbit on-direction-selective cells are aligned with the semicircular canals 322

14 Seeing 326

Exercises in seeing 328

Warm-up exercise: The extent of the visual world 328 Exercise: Seeing out of the corner of your eye 329

Minimum angular resolution 331

Midget and parasol ganglion cells 333

Center-surround receptive field organization 333 Transient and maintained response components 339 ANTAGONISTIC AND SUPPRESSIVE SURROUNDS 340

THE CHESHIRE CAT 341

Midget and parasol cell responses to more complex stimuli are predictable 342

Summing cone inputs 344

Comparing cone inputs 345

COLOR AND LANGUAGE 341

Seeing with our visual pathways 356

Neural snapshots 356

As dusk approaches, the silencing of midgets gives luster to the world 357

Parasol cells are important for perceiving form and movement 358

Epilogue Ignorance 361

We do not know how ganglion cells respond under natural conditions 362

We do not know how ganglion cell action potentials are used 363

We do not know how cortical action potentials are used 364

We do not know how the striate cortex deals with image movement 365

367 Topics

ANGLES 369

BIOCHEMICAL CASCADE

BLACKBODY RADIATION

371

cg-gated channels 405

CONE INPUT SPACE 417

EXPONENTIALS 439

LIGHT ABSORPTION

OPTIMAL COLORS 447

PHOTOMETRY 453

PHOTON CATCH RATE 471

POISSON DISTRIBUTION 485

RADIOMETRY 499

VISUAL PIGMENT REGENERATION 509

WAVELENGTH AND ENERGY 513

Notes 523

Appendices 542

A: SI units 542

B: Standard observer 544

References 547

Index 557