Contents

Preface ---- v

1	Introduction —— 1
1.1	Introduction —— 1
1.2	The research in China and worldwide —— 3
1.2.1	Research on wind turbine airfoils —— 3
1.2.2	Research on aerodynamic shape and performance of wind turbine
	blades —— 4
1.2.3	Research on structural design of composite wind turbine blades —— 5
1.2.4	Research on aeroelastic performance of wind turbine blades —— 6
2	Aerodynamic characteristics of wind turbine airfoils —— 9
2.1	Introduction —— 9
2.2	Basic theory of wind turbine airfoils —— 9
2.2.1	Geometric parameters of airfoils —— 9
2.2.2	Reynolds number —— 10
2.2.3	Mach number —— 11
2.2.4	Boundary layer —— 12
2.2.5	Potential flow solving method for an arbitrary airfoil ——15
2.3	Aerodynamic characteristic of airfoils —— 18
2.3.1	Pressure coefficient of the airfoil —— 18
2.3.2	Lift coefficient —— 19
2.3.3	Drag coefficient —— 20
2.3.4	Pitching moment coefficient —— 21
2.4	Stall on airfoils —— 22
2.5	Roughness properties of airfoils —— 23
2.6	Influence of geometric parameters on aerodynamic characteristics —— 25
2.6.1	Influence of the leading edge radius of an airfoil —— 25
2.6.2	Influence of the maximum relative thickness and its position —— 25
2.6.3	Influence of the maximum camber and its position —— 26
2.7	Influence of Reynolds number on aerodynamic characteristics —— 26
2.8	Method of predicting aerodynamic performance of airfoils —— 26
2.8.1	Introduction to XFOIL and RFOIL —— 27
2.8.2	Airfoil aerodynamic performance calculation cases —— 27
2.9	Chapter conclusions —— 30

3	Integrated expressions of wind turbine airfolls —— 31	4.3.6	Roughness sensitivity of the optimized airfolds —— 64
3.1	Introduction —— 31	4.3.7	Comparative analysis of the performance of optimized airfoils —— 69
3.2	Transformation theory of airfoils —— 31	4.4	Multiobjective optimization of the wind turbine airfoils —— 72
3.2.1	Conformal transformation —— 31	4.4.1	Design variables —— 72
3.2.2	Joukowsky transformation of airfoils —— 33	4.4.2	Objective function —— 74
3.2.3	Theodorsen method —— 34	4.4.3	Design constraints —— 76
3.3	Integrated expression of airfoil profiles —— 36	4.4.4	Multiobjective genetic algorithm —— 77
3.3.1	The trigonometric series representation of airfoil shape function —— 37	4.4.5	WT series wind turbine airfoils of high performance —— 78
3.3.2	The Taylor series representation of airfoil shape function —— 37	4.4.6	WTH series wind turbine airfoils with high lift-to-drag ratio —— 87
3.4	Airfoil profile analysis using integrated expressions —— 39	4.4.7	WTI series wind turbine airfoils with low roughness sensitivities —— 89
3.4.1	Type I airfoil profile —— 39	4.5	Design of airfoils with medium relative thickness —— 91
3.4.2	Type II airfoil profile —— 40	4.5.1	Geometric characteristics analysis of medium thickness airfoils —— 91
3.4.3	Type III airfoil profile —— 40	4.5.2	Aerodynamic characteristics of airfoils with medium thickness —— 93
3.5	Versatility properties for integrated expression of airfoils —— 41	4.5.3	The design of a new airfoil with medium thickness —— 94
3.5.1	First-order fitting —— 42	4.5.4	The effects of turbulence, Reynolds number and blade rotation —— 97
3.5.2	Second-order fitting —— 45	4.6	Design of airfoils based on noise —— 100
3.5.3	Third-order fitting —— 45	4.6.1	Acoustic theory for wind turbines —— 100
3.6	Control equation of shape function —— 47	4.6.2	The measurement of noise —— 101
3.6.1	Characteristics of airfoil sharp trailing edge —— 47	4.6.3	The acoustics model of the airfoil —— 103
3.6.2	Horizontal offset characteristics — 47	4.6.4	Comparison of noise calculations —— 113
3.6.3	Vertical offset characteristics —— 48	4.6.5	Influence of geometric parameters of airfoils on noise —— 115
3.6.4	Design space —— 48	4.6.6	Design of wind turbine airfoils with high efficiency and low noise —— 118
3.7	Convergence analysis of integrated expression of airfoils —— 49	4.7	Airfoil design based on a 2D power coefficient —— 123
3.7.1	Convergence characteristic of airfoil shape —— 50	4.7.1	The optimization model —— 125
3.7.2	Convergence characteristic of airfoil aerodynamic performance —— 54	4.7.2	The optimization flow chart —— 127
3.8	Chapter conclusions —— 56	4.7.3	CQU-DTU-B airfoil series —— 128
		4.7.4	Influence of airfoil trailing edge on the performance of the airfoil —— 138
4	Theory of parametric optimization for wind turbine airfoils —— 57	4.8	Improved design of airfoils using smooth curvature technique —— 140
4.1	Introduction —— 57	4.8.1	Smooth continuity of the profile for airfoil shape function —— 142
4.2	Design requirements of wind turbine airfoils —— 58	4.8.2	Curvature of profile for airfoil shape function —— 146
4.2.1	Structural and geometric compatibility —— 59	4.8.3	Improvement and optimization of the airfoil —— 148
4.2.2	Insensitivity of the maximum lift coefficient to leading edge	4.8.4	Optimization results —— 149
	roughness — 59	4.9	Design of wind turbine airfoils with high performance —— 152
4.2.3	Design lift coefficient —— 59	4.9.1	Objective function —— 152
4.2.4	The maximum lift coefficient and deep stall characteristics —— 60	4.9.2	Design variables —— 152
4.2.5	Low noise —— 60	4.9.3	Design constraints —— 153
4.3	Single object optimization of wind turbine airfoils —— 60	4.9.4	Optimization results and analysis of thin airfoil series —— 154
4.3.1	Objective function —— 60	4.9.5	A new direct design method for medium thickness
4.3.2	Design variables —— 61		wind turbine airfoils —— 162
4.3.3	Design constraints —— 61	4.9.6	Optimal model of thick airfoil series —— 163
4.3.4	Optimization method with MATLAB —— 62	4.9.7	Optimization results —— 164
4.3.5	Optimized results —— 62	4.10	Chapter conclusions —— 172

5	Experiments on the wind turbine airfoil and data analysis —— 175
5.1	Introduction —— 175
5.2	Design and manufacture of the airfoil model —— 175
5.3	Apparatus, method and data processing of the experiment —— 180
5.3.1	Wind tunnel —— 180
5.3.2	Installation of the model —— 181
5.3.3	Test apparatus —— 181
5.3.4	The experiments and data processing —— 185
5.4	Results of the experiments —— 187
5.4.1	Free transition conditions —— 187
5.4.2	Fixed transition conditions —— 190
5.4.3	Comparison of the results from experiments and RFOIL —— 194
5.4.4	Comparing different experimental cases —— 200
5.5	Chapter conclusions —— 202
6	Aerodynamics of wind turbine rotors and tip-loss corrections —— 203
6.1	Introduction —— 203
6.2	Aerodynamics of the wind turbine rotor —— 203
6.2.1	The momentum theory —— 203
6.2.2	The blade element theory —— 205
6.2.3	The blade element momentum theory —— 206
6.3	The tip-loss correction model —— 207
6.3.1	The tip-loss correction model of Glauert —— 207
6.3.2	The tip-loss correction model of Wilson and Lissaman —— 207
6.3.3	The tip-loss correction model of De Vries —— 208
6.3.4	The tip-loss correction model of Shen —— 208
6.4	The BEM model with Shen's tip-loss correction —— 208
6.5	Experimental validation —— 210
6.6	Chapter conclusions —— 214
7	Integrated representations for wind turbine blade shapes —— 215
7.1	Introduction —— 215
7.2	The integrated representations of 3D blade surface —— 215
7.2.1	Integrated expressions for 3D flat blades —— 216
7.2.2	Integrated expressions on 3D blade with chord variation —— 217
7.2.3	Integrated expressions on 3D blade with chord and
	twist variations — 219
7.3	Integrated representations for blades of an ART-2B rotor —— 220
7.4	Chapter conclusions —— 223

8	Shape optimization of wind turbine blades —— 225
8.1	Introduction —— 225
8.2	Influences of key parameters on the performance of rotors — 226
8.2.1	Three rotors with different power —— 226
8.2.2	Two rotors with the same power and different airfoil series —— 229
8.3	Optimization model of wind turbine blades based on COE —— 233
8.3.1	Optimization objective function —— 233
8.3.2	Design variables and constraints —— 235
8.3.3	Optimization program and method —— 236
8.3.4	Optimization results —— 237
8.3.5	Comparison of rotor performance —— 241
8.4	Optimization of blades for 2 MW wind turbines —— 251
8.4.1	Design of new wind turbine blades —— 251
8.4.2	Establishing the multiple-objects optimization model —— 252
8.4.3	Optimization result —— 254
8.5	Chapter conclusions —— 259
9	Structural optimization of composite wind turbine blades —— 261
9.1	Introduction —— 261
9.2	Basics of the mechanics of composite materials —— 261
9.2.1	Classification of fiber reinforcement composite materials —— 262
9.2.2	Characteristics of composite materials —— 263
9.2.3	Basic structures of composite materials and analysis methods —— 264
9.2.4	Anisotropy mechanics theory of composite materials — 266
9.2.5	Strength criteria of unidirectional plies —— 268
9.2.6	Strength analysis of laminates —— 273
9.2.7	Structural design principles of composite materials —— 273
9.3	Structural design of wind turbine blades
	made of composite materials —— 275
9.3.1	The geometric shape of the new blade —— 275
9.3.2	Design of internal structure of the blade —— 278
9.4	Parametric finite element modeling of composite
	wind turbine blades —— 289
9.4.1	The integrated representation of three-dimensional blade shapes —— 289
9.4.2	Parametric representation of chord and twist of wind turbine
	blades —— 290
9.4.3	Parametric finite element modeling of wind turbine blades —— 290
9.5	A new fluid-structure interaction method for blade design —— 299
9.5.1	The operating conditions of wind turbines —— 299
9.5.2	The local angle of attack and pressure distribution —— 300
9.5.3	The interpolation of aerodynamic forces —— 303

Хİ	Contents

9.6	Study of the structural optimization of the wind turbine blade
	made of composite materials —— 307
9.6.1	The optimization model —— 307
9.6.2	Optimization algorithm combined with finite element method —— 309
9.7	Optimization results —— 311
9.8	Chapter conclusions —— 316
10	Analysis of the aeroelastic coupling of wind turbine blades —— 319
10.1	Introduction —— 319
10.2	The structural kinetic model of wind turbine blades —— 319
10.3	The coordinate transformation —— 321
10.4	The wind load model —— 322
10.4.1	The normal wind model —— 322
10.4.2	The extreme wind model —— 322
10.5	Results validation —— 323
10.6	Case analysis —— 323
10.7	Chapter conclusions —— 328
11	Aeroelastic stability analysis of two-dimensional airfoil sections for wind
	turbine blades —— 331
11.1	Introduction —— 331
11.2	Static aeroelastic stability analysis of 2D airfoil section
	for wind turbine blades —— 332
11.2.1	Static aeroelastic model of wind turbine airfoil section —— 332
11.2.2	Analysis of the aeroelastic feedback system for a typical airfoil —— 334
11.3	Classic flutter problem —— 341
11.3.1	Structural dynamic model —— 341
11.3.2	The aerodynamic model —— 342
11.3.3	The aerodynamic-structural coupling calculation model —— 344
11.3.4	Aeroelastic analysis of a wind turbine airfoil section —— 345
11.4	The dynamic stall and aeroelastic analysis
	of the wind turbine blade —— 355
11.4.1	The structural kinematics model —— 355
11.4.2	The aerodynamic model —— 356
11.4.3	The aeroelastic coupling system —— 358
11.4.4	The numerical results —— 361
11.5	Chapter conclusions —— 365