Índice de contenidos

Índice de contenidos						
Resumen						
Abstract						
Introducción x						
1.	El g	grafeno.	1			
	1.1.	Descripción básica del grafeno	1			
	1.2.	Modelo de enlace fuerte sobre el grafeno	2			
	1.3.	Diagrama de bandas σ y π	8			
	1.4.	Diagrama de bandas π y π^* en mayor detalle	11			
	1.5.	Límite del continuo	13			
	1.6.	Nano cintas de grafeno zigzag	17			
	1.7.	Resumen	24			
2.	Pot	encial en medio de la cinta de grafeno de bordes zigzag.	27			
	2.1.	Introducción.	27			
	2.2.	Modelo de Hubbard aplicado en cintas de grafeno zigzag . $\ .\ .\ .$.	28			
	2.3.	Diagramas de fase de la ZGNR	30			
	2.4.	Magnetización local en la 8-ZGNR	38			
	2.5.	Transmisión a través de la región magnética de la 8-ZGNR	42			
	2.6.	Anti-resonancias de Fano en la 8-ZGNR	47			
	2.7.	Conclusiones.	49			
3.	Teo	ría del funcional de la densidad.	51			
	3.1.	Introducción	51			
	3.2.	Aproximación de Borh-Oppenheimer	52			
	3.3.	El método de Hartree-Fock	56			
	3.4.	Teoría de la Funcional Densidad	59			
		3.4.1. Modelo de Thomas-Fermi-Dirac	60			

		3.4.2. Teoremas de Hohenberg-Kohn	61
		3.4.3. Teoremas de Hohenberg-Kohn en campo magnético	63
		3.4.4. Método de Kohn-Sham	64
		3.4.5. Approximation del funcional E_{XC} .	69
		3.4.6. Sistemas periódicos	73
		3.4.7. Cálculo de la estructura electrónica de los átomos	77
		3.4.8. El pseudopotencial del átomo	84
		3.4.9. Aplicación del pseudopotencial.	89
	3.5.	Método de las bandas elásticas deformadas (NEB)	91
	3.6.	El Quantum Espresso	96
	3.7.	El Wannier90	100
	3.8.	Resumen	104
4.	Car	ales de grafeno grabados en F-grafeno.	107
	4.1.	Introducción.	107
	4.2.	Descripción del cálculo de primeros principios	113
	4.3.	Estructura cristalina del 6- $\alpha \alpha$ y 6- $\alpha \beta$	116
	4.4.	Estructura electrónica del 6- $\alpha \alpha$ y 6- $\alpha \beta$	119
		4.4.1. Estructura electrónica de los canales 6- $\alpha\alpha$	120
		4.4.2. Estructura electrónica de los canales 6- $\alpha\beta$	125
	4.5.	Equivalencia entre el canal de grafeno y los sistemas 6- $\alpha \alpha$ y 6- $\alpha \beta$	131
	4.6.	Dependencia de la estructura electrónica del n- $\alpha\alpha$ y del n- $\alpha\beta$ con res-	
		pecto de "n"	133
		4.6.1. Estructura cristalina y electrónica del n- $\alpha\alpha$.	133
		4.6.2. Estructura cristalina y electrónica del n- $\alpha\beta$	138
	4.7.	Conclusiones	143
5.	Mo	delo de Hubbard aplicado a los canales de grafeno.	145
	5.1.	Orbitales de Kohn-Sham del n- $\alpha \alpha$ y n- $\alpha \beta$	146
	5.2.	Ajuste de Wannier en los canales de grafeno	152
	5.3.	Construcción del Modelo Hubbard a partir de los ajustes de Wannier .	163
	5.4.	Resultados del modelo de Hubbard de los sistemas n- $\alpha \alpha$ y n- $\alpha \beta$	180
	5.5.	Conclusiones.	187
6.	Dift	usión de átomos de flúor en grafeno dopado.	193
	6.1.	Introducción	193
	6.2.	Adsorbato de flúor sobre grafeno.	195
		6.2.1. Corrección de campo dipolar	199
	6.3.	Estructura cristalina y electrónica del flúor-grafeno en función del dopaje	
		δn	203

	6.4.	Barrera de difusión	208				
	6.5.	Análisis del coeficiente de difusión.	212				
	6.6.	Conclusiones	213				
7.	Acoplamiento espín-órbita inducido por adsorbatos de flúor sobre gra-						
	fenc).	215				
	7.1.	Introducción.	215				
	7.2.	Consideraciones sobre el cálculo DFT	221				
	7.3.	Sistemas $N \times N$ y $2N \times N$.	223				
	7.4.	Estructuras electrónicas obtenidas con cálculos de la DFT	228				
		7.4.1. Sistema 7×7 sin dopaje electrónico	229				
		7.4.2. Sistema 6×6 sin dopaje electrónico	230				
		7.4.3. Sistemas 10×5 y 5×5 sin dopaje electrónico	234				
	7.5.	Estructura electrónica con respecto a el dopaje electrónico	235				
	7.6.	Desdoblamiento de espín de las bandas inducidas por el SOC y el dopaje					
		electrónico.	239				
		7.6.1. Desdoblamiento de bandas del sistema $7 \times 7 \dots \dots \dots \dots$	240				
		7.6.2. Desdoblamiento de bandas del sistema $6 \times 6 \dots \dots \dots \dots$	242				
		7.6.3. Desdoblamiento de bandas del sistema 10×5 y 5×5	243				
	7.7.	Modelo de enlace fuerte y orbitales de Wannier	245				
		7.7.1. Hamiltoniano de enlace fuerte \mathcal{H}	245				
		7.7.2. Cálculo de los orbitales de Wannier	248				
		7.7.3. Adicción de la interacción espín-órbita.	253				
	7.8.	Conclusiones	263				
8.	Res	umen y conclusiones.	267				
A.	Esti	ructura de los estados del Grafeno y F-grafeno	275				
	A.1.	Carácter orbital de los estados del grafeno	275				
	A.2.	Descripción básica del F-grafeno.	277				
B.	Moo	delo de Hubbard	281				
	B.1.	Método de Hartree-Fock aplicado al modelo de Hubbard	281				
C.	Esta	abilidad de las interfases $\alpha \mathbf{y} \beta$	289				
	C.1.	Migración del flúor en las interfases α y β $\hfill \hfill \ldots$	289				
D.	Esti	ructura electrónica del 60C1F	293				
	D.1.	Zona de Brillouin del 60C1F	293				
	D.2.	Calibración de la DFT para el 60C1F	294				
	D.3.	Diagrama de bandas del 60C1F	296				

D.4. Desdoblamiento de bandas inducido por el acoplamiento espín órbita	•	297
Publicaciones asociadas		323
Agradecimientos		325