Contents

PREFA	CE TO THE DOVER EDITION	vii
PREFA	CE	xi
list o	F FREQUENTLY USED SYMBOLS	xxiii
1 INTI	RODUCTION	1
1.1	The helium liquids	1
1.2	Early history of superfluid ³ He	5
1.3	Elementary discussion of superfluid ³ He	7
	1.3.1 The internal structure of Cooper pairs	8
	1.3.2 Broken symmetry and the order parameter	9
	1.3.3 Orientational effects	12
	1.3.4 Textures	15
	1.3.5 Superfluid mass currents in ³ He-A	16
	1.3.6 Dynamic properties	17
1.4	Relation to other fields	21
1.5	Reviews and introductory articles on superfluid 'He	22
	1.5.1 General reviews	22
	1.5.2 Reviews of specific topics	23
	1.5.3 Discussions in books on related subjects	24
	1.5.4 Introductory articles	24
2 TH	EORY OF NORMAL FERMI LIQUIDS	25
2.1	The quasiparticle concept	25
2.2	Thermodynamic properties	28
	2.2.1 Entropy and specific heat	28
	2.2.2 Spin susceptibility	30
	2.2.3 Compressibility	30
2.3	Transport properties	32
	2.3.1 Hydrodynamic equations	32
	2.3.2 Kinetic equation	33
	2.3.3 Quasiparticle lifetime	34
	2.3.4 Local equilibrium	37
	2.3.5 The linearized collision integral	38
	2.3.6 Calculation of the transport coefficients	40

14	Collective modes	42
2.4	Theories beyond the Fermi-liquid model	46
2.5	2.5.1 Microscopic theories	46
	2.5.2 Polarization potential theory	48
	2.5.3 Extended Fermi-liquid theory	49
	2.5.4 Lattice-gas model	52
	2.5.5 Phenomenological approaches	55
	2.5.6 Pair interaction	57
	Further reading	59

3 PAIR CORRELATIONS IN THE WEAK-COUPLING LIMIT

xvi

3.1	Cooper instability	61
3.2	Generalized pairing theory	64
	3.2.1 Generalized BCS wave function	65
	3.2.2 Diagonalization of the mean-field Hamiltonian	67
	3.2.3 Single-particle excitations	69
	3.2.4 Singlet versus triplet pairing	70
3.3	Pairing theory at finite temperature	71
	3.3.1 Effective Hamiltonian	72
	3.3.2 Gap equation	73
	3.3.3 Critical temperature	75
	3.3.4 Free energy	76
3.4	Thermodynamic properties of model states	80
	3.4.1 p-wave pairing; the BW and ABM states	80
	3.4.2 Gap parameter	82
	3.4.3 Specific heat	83
	3.4.4 Normal-fluid density	84
	3.4.5 Spin susceptibility	87
3.5	Expectation value of two-particle quantities	90
	Further reading	92

4 BASIC EXPERIMENTAL PROPERTIES 4.1 Experimental techniques for attaining ultralow temperatures 4.2 Thermodynamic properties 4.2.1 Phase diagram 4.2.2 Specific heat 4.3 Magnetic properties 4.4 Sound propagation 4.5 Hydrodynamic properties and superfluidity 4.5.1 Normal-fluid density and viscosity 4.5.2 Persistent currents 4.6 Rotating superfluid ³He Further reading

Contents

Contents

61

93

93

95

95

98

100

102

106

106

106

109

111

5 PAIR CORRELATIONS BEYOND WEAK COUPLING 113

5 1	General Ginzburg-Landau expansion of the free energy	113
5.2	Phenomenological classification of model states	118
•	5.2.1 Unitary states	118
	5.2.2 Relative stability of model states	122
5.3	Spin fluctuations and the stability of the ABM state	123
5.4	Effects of a magnetic field	129
	Further reading	136

6 BROKEN SYMMETRIES AND MACROSCOPIC ORDER 137 6.1 Broken symmetries and group theory 141

0.1	DIORC	in Symmetries and Broup meery	
	6.1.1	The symmetry group describing superfluid ³ He	143
	6.1.2	A two-dimensional model of superfluid ³ He	144
	6.1.3	Remaining symmetries of the ³ He-A, -A ₁ and -B order	
		parameters	147
6.2	Symm	etry and order-parameter structure	149
	6.2.1	Continuous symmetries	150
	6.2.2	Discrete symmetries	162
	6.2.3	Symmetry and stationary points of a free energy	165
	6.2.4	Symmetry reduction due to a magnetic field or spin-	
		orbit coupling	169
	6.2.5	Symmetry classification of an exactly solvable case:	
		d-wave pairing	170
	6.2.6	Broken symmetries in high-energy physics	172
6.3	Orien	tation of the order parameter by internal residual	
	intera	ctions and external fields	174
	6.3.1	Dipole interaction	174
	6.3.2	Orientation induced by a magnetic field	180
	6.3.3	Orientation induced by an electric field	181
	6.3.4	Effect of superflow	182
	6.3.5	Orientational effects in the B phase due to magnetic	
		and electric fields and superflow	183
	6.3.6	Surface energies and boundary conditions	185
	Furth	er reading	188

7 SUPERFLOW AND TEXTURES1897.1 Superfluidity1907.2 Gradient free energy1947.4 Directories195

7.2.1	The A phase	195
7.2.2	The B phase	199
7.2.3	Healing lengths	200

xvii

		4	e	ę	•	•
Л	9	7	1	ł	į.	1

	0		202
1.E' 7.3	Super	The A phase	202
	7.3.1	Finite normal density at $T = 0$ in the A phase	203
	722	$\mathbf{O}_{\text{uantization of circulation}} = \mathbf{O}_{\text{in the A phase}}$	200
7.4	Topol	logical investigation of defects	208
7.4	Lines	r defects	211
1.5	751	Topological stability	219
	752	Topological stability Topological properties of B-phase vortices	219
	753	Topological properties of A-phase vortices at small	220
	1.0.0	distances	223
	7.5.4	Topological properties of A-phase vortices at large	
		distances	231
	7.5.5	Symmetry classification of vortices	233
	7.5.6	Axisymmetric vortices	235
	7.5.7	Energetics of vortices	238
	7.5.8	Vortices in the A phase	240
	7.5.9	Vortices in the B phase	245
	7.5.10	Magnetic properties of vortices in the B phase	252
7.6	Rotat	ing superfluid ³ He	257
	7.6.1	Isotropic superfluid	257
	7.6.2	Superfluid ³ He	259
7.7	Point	defects	263
	7.7.1	The B phase	264
	7.7.2	The A phase	265
7.8	Plana	r defects	267
	7.8.1	Topological classification	267
	7.8.2	Planar solitons in the A phase	272
7.0	7.8.3	Planar solitons in the B phase	278
7.9	Surfac	atta Direct N	280
	7.9.1	³ He-B in a slap	281
	7.9.2	3 He A in a slob	283
	7.9.5	3 Ua A in a subinder	286
	705	3 He A in a sphere	288
7 10	Stabili	ty of superflow and related toxtural transitions in 371.	292
7.10	7 10 1	Stability of superflow in the bulk liquid	294
	7 10 2	The belical instability of the uniform I taxture	295
	7 10 3	Textures and superflow in the presence of he and i	302
	7 10 4	The effect of superflow on domain wells	312
	7 10.4	Flow-induced dynamical taxtures	313
7 11	Pair_h	riow-induced dynamical textures	319
/.11	7 11 1	The B phase	321
	7 11 2	The A phase	323
7 12	Dissing	the A phase	326
/.12	7 12 1	Superfluid ⁴ He	326
	7.12.1	The B phase	327
	7.12.2	The A phase	329
	Furthe	r reading	331
			337

Contents

8	SPI	N DYNAMICS	339
	8.1	Derivation of the equations of motion	340
	8.2	Nuclear magnetic resonance under linear spatially	
		homogeneous conditions	342
		8.2.1 Limit of zero magnetic field	344
		8.2.2 Effect of the magnetic field on NMR	345
	8.3	Nonlinear NMR phenomena in uniform textures	348
		8.3.1 The Leggett equations for the A and B phases	348
		8.3.2 Spin dynamics in zero magnetic field	349
		8.3.3 Nonlinear spin dynamics in the A phase	355
		8.3.4 Nonlinear spin dynamics in the B phase	359
	8.4	Texture-induced magnetic resonance phenomena	362
		8.4.1 Tilted uniform textures	363
		8.4.2 NMR shifts induced by superflow	364
		8.4.3 General theory of texture-induced NMR shifts in the A	
		phase	365
		8.4.4 Dynamics of solitons in the A phase	376
		8.4.5 NMR signature of solitons in the A phase	377
		8.4.6 General theory of texture-induced NMR shifts in the B	
		phase	383
	8.5	NMR in rotating superfluid ³ He	389
	0.0	8.5.1 The A phase	389
		8.5.2 The B phase	390
	8.6	Spin-relaxation phenomena	394
	010	Further reading	403
9	HY	DRODYNAMIC THEORY	405
	9.1	General principles	406
		9.1.1 Thermodynamic identities	406

xix

	9.1.1	Thermodynamic identities	406
	9.1.2	Standard procedure for deriving hydrodynamic	
		equations	407
	9.1.3	Equations of motion for the symmetry variables	409
9.2	Hvdro	odynamic equations for the B phase	411
	9.2.1	The thermodynamic identity and equilibrium	
		conditions	412
	9.2.2	Hydrodynamic equations for the symmetry variables	413
	9.2.3	Hydrodynamic equations for the conserved quantities	414
9.3	Hydro	odynamic equations for the A phase	416
210	9.3.1	The concept of an intrinsic angular momentum	417
	932	Equations of motion for the symmetry variables	418
	933	Thermodynamic identities and equilibrium conditions	420
	934	Entropy production	423
	035	Derivation of the hydrodynamic currents	425
	0.3.6	Europer consequences of an intrinsic orbital angular	
	7.3.0	momentum	427

XX			Contents
	9.4	Hydrodynamics for finite magnetic field	429
		9.4.1 The A phase in a magnetic field	430
		9.4.2 The B phase in a magnetic field	432
		Further reading	434
40	_		
10	TR.	ANSPORT PROPERTIES	435
	10.1	Kinetic equations	437
		10.1.1 Matrix kinetic equation	438
		10.1.2 Conserved quantities and conservation laws	440
		10.1.3 Kinetic equation for Bogoliubov quasiparticles	442
		10.1.4 Gauge transformation of the kinetic equation	445
	10.2	10.1.5 Gauge-invariant densities and currents	447
	10.2	10.2.1 Metrin encurso for the second	450
		10.2.1 Matrix operator for binary collision processes	450
		10.2.2 Conservation properties of the collision integral	453
		10.2.4 Relevation the Bogoliubov quasiparticles	454
		10.2.5 Reguliubou empiricanti l	456
	10.3	Transport coefficients	457
	10.5	10.3.1 Transport coefficients of the D	461
		10.3.2 Intrinsic spin relevation	464
		10.3.3 Transport coefficients of the A at	475
1	10.4	Flow in restricted geometries	479
		10.4.1 Slip correction to hydrodynamics	484
		10.4.2 Andreev reflection	484
		10.4.3 Poiseuille flow	486
		10.4.4 Vibrating-wire experiments	489
		10.4.5 Sound propagation and other flow problems	491
		10.4.6 Superfluidity in ³ He films	491
		10.4.7 Ion mobility	494
		Further reading	496
		-	499
11 (COL	LECTIVE MODES	
			501
1	1.1	Hydrodynamic modes	502
		11.1.1 Sound modes	502
		11.1.2 Spin-wave modes	505
		11.1.3 Other hydrodynamic modes	503
1	1.2	Symmetry classification of order-parameter modes in the	511
		collisionless regime	511
		11.2.1 The B phase	517
		11.2.2 The A phase	515
11	.3	Time-dependent mean-field theory in the collisionless regime	515
		11.3.1 Collective modes in the B phase	572
		11.3.2 Collective modes in the A phase	525
		11.3.3 Effect of residual interactions	520
			555

Contents

	11.3.4	Observability of collective modes	534
11.4	Collisionless sound		535
	11.4.1	Phenomenological model	536
	11.4.2	Sound propagation in the B phase	538
	11.4.3	Sound propagation in the A phase	543
	11.4.4	Nonlinear effects of sound propagation	546
	11.4.5	Transverse sound and spin waves	546
	Furthe	r reading	547

12 AMPLIFICATION OF WEAK INTERACTION EFFECTS DUE TO MACROSCOPIC QUANTUM COHERENCE

12.1	Properties of the BCS pair wave function	550
12.2	The permanent orbital magnetic moment of the A phase	553
12.3	The permanent electric dipole moment of the B phase	555
	Further reading	560
	e e e e e e e e e e e e e e e e e e e	

REFERENCES	
AUTHOR INDEX	

SUBJECT I	NDEX
-----------	------

xxi