Contents

	Introduction	1
1	A survey of the basic principles of modern aerodynamics	3
2	From antiquity to the age of Newton	14
3	From Newton to the emergence of the field theory of fluid flow	19
4	The era of the whirling arm and the invention of the aeroplane	27
5	Nineteenth-century developments in the understanding of fluid flow	42
6	Practical developments in aeronautics	51
7	Frederick William Lanchester (1868–1946)	57
8	Lift forces in flowing fluids (Kutta, 1902) Commentary on Kutta (1902)	70 74
9	On the motion of fluids with very little friction (Prandtl, 1904) Commentary on Prandtl (1904)	77 84
10	On annexed vortices (Zhukovskii, 1906a) Commentary on Zhukovskii (1906a)	88 105
11	Boundary layers in fluids with small friction (Blasius, 1908) Introduction	107 107
	I Boundary layer for the steady motion at flat plate immersed parallel to the streamlines	110
	II Calculation of the separation position behind a body immersed in a steady flow	118
	III Emergence of the boundary layer and the separation position with a sudden onset of motion from rest	125
	IV Formation of the separation position with motion uniformly accelerating from rest	130

	V Application of the results of the separation problems	
	to the circular cylinder	137
	Commentary on Blasius (1908)	142
12	On a two-dimensional flow related to the fundamentals of the	
	problems of flight (Kutta, 1910)	145
	1 Introduction	145
	2 General expression	147
	3 The arched shell of circular form	149
	4 The lift force on the shell	155
	5 A numerical example: the rounding of the leading edge	160
	6 Flat plate and shell under various angles of attack β	171
	7 Final considerations	180
	Commentary on Kutta (1910)	183
13	On the pressure exerted by a plane-parallel flow on obstructing	
	bodies (aeroplane theory) (Chaplygin, 1910)	186
	1 Introduction	186
	2 Derivation of the general formula for components	
	of the pressure force	187
	3 Pressure force in the presence of standing vortices	189
	4 The pressure force on a segment of a circular cylinder	191
	5 The pressure force acting on a complex wing	198
	6 A wing with one cuspidal point	208
	7 Other wing forms	211
	8 The flow past a plate shaped into a circular arc	
	in the presence of a vortex	213
	9 Calculation of the rotating moment	218
	Commentary on Chaplygin (1910)	220
14	On the contours of the aerofoils of hang gliders (Zhukovskii, 1920)	223
	Commentary on Zhukovskii (1910)	229
15	Subsequent developments	232
	References	234
	Index	241