Contents

Chapter 1. Thermodynamics, Fundamentals		
1.1.	First Law of Thermodynamics and Equilibrium	4
1.2.	Second Law	8
1.3.	Variational Statement of Second Law	11
1.4.	Application: Thermal Equilibrium and Temperature	13
1.5.	Auxiliary Functions and Legendre Transforms	16
1.6.	Maxwell Relations	20
1.7.	Extensive Functions and the Gibbs-Duhem Equation	22
1.8.	Intensive Functions	24
	Additional Exercises	25
	Bibliography	27
Cha	pter 2. Conditions for Equilibrium and Stability	28
2.1.	Multiphase Equilibrium	29
2.2.	Stability	33
2.3.	Application to Phase Equilibria	37
2.4.	Plane Interfaces	44
	Additional Exercises	49
	Bibliography	52
Cha	pter 3. Statistical Mechanics	54
3.1.	The Statistical Method and Ensembles	55
3.2.	Microcanonical Ensemble and the Rational Foundation	
	of Thermodynamics	59
3.3.	Canonical Ensemble	62

CONTENTS		
3.4. A Simple Example	66	
3.5. Generalized Ensembles and the Gibbs Entropy Formula	69	
3.6. Fluctuations Involving Uncorrelated Particles	72	
3.7. Alternative Development of Equilibrium Distribution		
Functions	74	
Additional Exercises	79	
Bibliography	84	
Chanter 4. Non-Interacting (Ideal) Systems	86	
4.1. Occupation Numbers	89	
4.2. Photon Gas	90	
4.3. Phonon Gas or Fluctuations of Atomic Positions in a	70	
Cold Solid	92	
4.4. Ideal Gases of Real Particles	94	
4.5. Electrons in Metals	97	
4.6. Classical Ideal Gases, the Classical Limit	100	
4.7. Thermodynamics of an Ideal Gas of Structureless		
Classical Particles	103	
4.8. A Dilute Gas of Atoms	105	
4.9. Dilute Gas of Diatomic Molecules	106	
4.10. Chemical Equilibria in Gases	111	
Additional Exercises	113	
Bibliography	118	
Chapter 5. Statistical Mechanical Theory of Phase		
Transitions	119	
5.1. Ising Model	119	
5.2. Lattice Gas	124	
5.3. Broken Symmetry and Range of Correlations	125	
5.5. Variational Treatment of Mean Field Theory	131	
5.6. Ponormalization Group (PG) Theory	135	
5.7 BG Theory for the Two Dimensional Ising Model	1.42	
5.8. Isomorphism between Two Level Quantum Machanical	143	
System and the Ising Model	140	
Additional Exercises	149	
Bibliography	154	
Бюновгарну	128	
Chapter 6. Monte Carlo Method in Statistical Mechanics		
6.1. Trajectories	160	
6.2. A Monte Carlo Trajectory	163	
6.3. Non-Boltzmann Sampling	168	

x	iii	

CONTENTS

XIII	I	CONTENTS
6.4	4. Quantum Monte Carlo	175
	Additional Exercises	178
	Bibliography	182
	Appendix	184
Ch	apter 7. Classical Fluids	188
7.1	I. Averages in Phase Space	189
7.2	2. Reduced Configurational Distribution Functions	195
7.3	3. Reversible Work Theorem	201
7.4	4. Thermodynamic Properties from $g(r)$	202
7.5	5. Measurement of $g(r)$ by Diffraction	207
7.6	5. Solvation and Chemical Equilibrium in Liquids	209
7.7	7. Molecular Liquids	213
7.8	3. Monte Carlo for Hard Disks	218
	Additional Exercises	223
	Bibliography	228
	Appendix	230
Ch	apter 8. Statistical Mechanics of Non-Equilibrium	
	Systems	234
8.1	1. Systems Close to Equilibrium	235
8.2	2. Onsager's Regression Hypothesis and Time Correlation	n
	Functions	237
8.3	3. Application: Chemical Kinetics	242
8.4	4. Another Application: Self-Diffusion	246
8.5	5. Fluctuation-Dissipation Theorem	252
8.6	5. Response Functions	255
8.7	7. Absorption	258
8.8	3. Friction and the Langevin Equation	261
	Additional Exercises	266
	Bibliography	270

Index

271