CONTENTS

PREFACE

Chapter 1 BASIC PRINCIPLES FOR ELECTRIC MACHINE ANALYSIS

- 1.1 Introduction / 1
- 1.2 Magnetically Coupled Circuits / 1
- 1.3 Electromechanical Energy Conversion / 11
- 1.4 Machine Windings and Air-Gap MMF / 35

1.5 Winding Inductances and Voltage Equations / 47

References / 58

Problems / 58

Chapter 2 DIRECT-CURRENT MACHINES

- 2.1 Introduction / 67
- 2.2 Elementary Direct-Current Machine / 68
- 2.3 Voltage and Torque Equations / 76
- 2.4 Basic Types of Direct-Current Machines / 78
- 2.5 Dynamic Characteristics of Permanent-Magnet and Shunt dc Motors / 88
- 2.6 Time-Domain Block Diagrams and State Equations / 92
- 2.7 Solution of Dynamic Characteristics by Laplace Transformation / 98 References / 104

Problems / 105

vii

xi

1

67

Chapter 3 REFERENCE-FRAME THEORY

109

141

191

- 3.1 Introduction / 109
- 3.2 Background / 109
- 3.3 Equations of Transformation: Changes of Variables / 111
- 3.4 Stationary Circuit Variables Transformed to the Arbitrary Reference Frame / 115
- 3.5 Commonly Used Reference Frames / 123
- 3.6 Transformation Between Reference Frames / 124
- 3.7 Transformation of a Balanced Set / 126
- 3.3 Balanced Steady-State Phasor Relationships / 127
- 3.9 Balanced Steady-State Voltage Equations / 130
- 3.10 Variables Observed from Several Frames of Reference / 133 References / 137

Problems / 138

Chapter 4 SYMMETRICAL INDUCTION MACHINES

- 4.1 Introduction / 141
- 4.2 Voltage Equations in Machine Variables / 142
- 4.3 Torque Equation in Machine Variables / 146
- 4.4 Equations of Transformation for Rotor Circuits / 147
- 4.5 Voltage Equations in Arbitrary Reference-Frame Variables / 149
- 4.6 Torque Equation in Arbitrary Reference-Frame Variables / 153
- 4.7 Commonly Used Reference Frames / 154
- 4.8 Per Unit System / 155
- 4.9 Analysis of Steady-State Operation / 157
- 4.10 Free Acceleration Characteristics / 165
- 4.11 Free Acceleration Characteristics Viewed from Various Reference Frames / 172
- 4.12 Dynamic Performance During Sudden Changes in Load Torque / 174
- 4.13 Dynamic Performance During a 3-Phase Fault at the Machine Terminals / 181
- 4.14 Computer Simulation in the Arbitrary Reference Frame / 184 References / 187

Problems / 188

Chapter 5 SYNCHRONOUS MACHINES

- 5.1 Introduction / 191
- 5.2 Voltage Equations in Machine Variables / 192
- 5.3 Torque Equation in Machine Variables / 197

5.4	Stator Voltage Equations in Arbitrary Reference-Frame Variables / 198			
5.5 Voltage Equations in Rotor Reference-Frame Variables:				
	Park's Equations / 200			
5.6	Torque Equations in Substitute Variables / 206			
5.7	Rotor Angle and Angle Between Rotors / 207			
5.8	Per Unit System / 209			
5.9	Analysis of Steady-State Operation / 210			
5.10				
5.11	Dynamic Performance During a 3-Phase Fault at the Machine Terminals / 225			
5.12	Approximate Transient Torque Versus Rotor Angle Characteristics / 229			
5.13	Comparison of Actual and Approximate Transient Torque-Angle			
	Characteristics During a Sudden Change in Input Torque: First Swing Transient Stability Limit / 232			
5 1 4	and the instant Terrain Angle			
5.14	Characteristics During a 3-Phase Fault at the Terminals: Critical Clearing Time / 239			
5.15				
5.16	Computer Simulation / 246			
Refe	rences / 255			
Prob	lems / 256			
Cha	pter 6 THEORY OF BRUSHLESS dc MACHINES 261			
6.1	Introduction / 261			
6.2	Voltage and Torque Equations in Machine Variables / 261			
6.3	Voltage and Torque Equations in Rotor Reference-Frame Variables / 264			
6.4	Analysis of Steady-State Operation / 266			
6.5	Dynamic Performance / 274			
Refe	rences / 281			
Prob	lems / 281			
Cha	pter 7 MACHINE EQUATIONS IN OPERATIONAL IMPEDANCES AND TIME CONSTANTS 283			
7.1	Introduction / 283			
7.2	Park's Equations in Operational Form / 284			
7.3	Operational Impedances and $G(p)$ for a Synchronous Machine with Four Rotor Windings / 284			
7.4	Standard Synchronous Machine Reactances / 288			

- 7.5 Standard Synchronous Machine Time Constants / 290
- 7.6 Derived Synchronous Machine Time Constants / 291

	·		
X CONTENTS		1 2 2	
7.780 Paramete	rs from Short-Circuit Characteristics / 294		10.5 Ana
	rs from Frequency-Response Characteristics / 301		2-P
References / 3			10.6 Sin
Problems / 308			References
			Problems
Chapter 8 LI	NEARIZED MACHINE EQUATIONS	311	-
8.1 Introduct	ion / 311		Chapter
8.2 Machine	Equations to Be Linearized / 312		11.1 Inti
8.3 Lineariza	tion of Machine Equations / 313		11.2 Sin
8.4 Small-Di	splacement Stability: Eigenvalues / 323		11.3 3-P
8.5 Eigenvalı	es of Typical Induction Machines / 324		Reference
8.6 Eigenvalu	es of Typical Synchronous Machines / 327		Problems
8.7 Transfer l	Function Formulation / 330		
References / 33	5		Chapter
Problems / 335			12.1 Int
			12.2 Sol
Chapter 9 RE	DUCED-ORDER MACHINE EQUATIONS	337	12.3 Ste
9.1 Introduction		007	12.4 On
	Order Equations / 338		12.5 Tw
	Machine Large-Excursion Behavior Predicted by		12.6 For
Reduced-(Order Equations / 343		12.7 Ma
	us Machine Large-Excursion Behavior Predicted		12.8 Ma
by Reduce	d-Order Equations / 350		Reference
9.5 Linearized	Reduced-Order Equations / 354		Problems
9.6 Eigenvalue	s Predicted by Linearized Reduced-Order Equations	/ 354	
9.7 Simulation	of Reduced-Order Models / 355		Chapter
9.8 Closing Co	mments and Guidelines / 358		
References / 358			13.1 Ir
Problems / 359			13.2 T
			13.3 1
Chapter 10 SY	MMETRICAL AND UNSYMMETRICAL		13.4 P
2-6	PHASE INDUCTION MACHINES	361	13.5 S
10.1 Introduction	n / 361		13.6 T
10.2 Analysis of	Symmetrical 2-Phase Induction Machines / 362		13.7 S
10.3 Voltage and	Torque Equations in Machine Variables for		13.8 H
Unsymmetr	ical 2-Phase Induction Machines / 371		13.9 D
10.4 Voltage and	Torque Equations in Stationary Reference-Frame		13.10 O
Variables fo	r Unsymmetrical 2-Phase Induction Machines / 373		13.11 C

395

427

alysis of Steady-State Operation of Unsymmetrical Phase Induction Machines / 377 gle-Phase Induction Machines / 383 s / 393 / 393

11 SEMICONTROLLED BRIDGE CONVERTERS

- roduction / 395
- gle-Phase Load Commutated Converter / 395

Phase Load Commutated Converter / 406

s / 425

/ 425

12 dc MACHINE DRIVES

- roduction / 427
- lid-State Converters for dc Drive Systems / 427
- eady-State and Dynamic Characteristics of ac/dc Converter Drives / 431
- e-Quadrant dc/dc Converter Drive / 443
- o-Quadrant dc/dc Converter Drive / 460
- ur-Ouadrant dc/dc Converter Drive / 463
- achine Control with Voltage-Controlled dc/dc Converter / 466
- achine Control with Current-Controlled dc/dc Converter / 468 s / 476

/ 476

13 FULLY CONTROLLED 3-PHASE BRIDGE **CONVERTERS**

- ntroduction / 481
- The 3-Phase Bridge Converter / 481
- 80° Voltage Source Operation / 487
- ulse-Width Modulation / 494
- ine-Triangle Modulation / 499
- hird-Harmonic Injection / 503
- pace-Vector Modulation / 506
- lysteresis Modulation / 510
- Delta Modulation / 512
- Open-Loop Voltage and Current Control / 513
- Closed-Loop Voltage and Current Controls / 516

481

References / 520 Problems / 521

Chapter 14 INDUCTION MOTOR DRIVES

14.1 Introduction / 525

14.2 Volts-Per-Hertz Control / 525

14.3 Constant Slip Current Control / 532

14.4 Field-Oriented Control / 540

14.5 Direct Rotor-Oriented Field-Oriented Control / 544

14.6 Robust Direct Field-Oriented Control / 546

14.7 Indirect Rotor Field-Oriented Control / 550

14.8 Conclusions / 554

References / 554

Problems / 555

Chapter 15 BRUSHLESS dc MOTOR DRIVES

- 15.1 Introduction / 557
- 15.2 Voltage-Source Inverter Drives / 558
- 15.3 Equivalence of VSI Schemes to Idealized Source / 560
- 15.4 Average-Value Analysis of VSI Drives / 568
- 15.5 Steady-State Performance of VSI Drives / 571
- 15.6 Transient and Dynamic Performance of VSI Drives / 574
- 15.7 Consideration of Steady-State Harmonics / 578
- 15.8 Case Study: Voltage-Source Inverter-Based Speed Control / 582
- 15.9 Current-Regulated Inverter Drives / 586
- 15.10 Voltage Limitations of Current-Source Inverter Drives / 590
- 15.11 Current Command Synthesis / 591
- 15.12 Average-Value Modeling of Current-Regulated Inverter Drives / 595

15.13 Case Study: Current-Regulated Inverter-Based Speed Controller / 597

References / 600

Problems / 600

Appendix A Trigonometric Relations, Constants and Conversion Factors, and Abbreviations

603

525

557

INDEX

605