CONTENTS

	Preface	viii
1	First-order autonomous systems	1
1.1	Basic theory	1
1.2	Rotation	6
1.3	Natural boundaries	7
1.4	Examples from biology	8
	Exercises	9
2	Linear transformations of the plane	12
2.1	Introduction	12
2.2	Area-preserving transformations	13
2.3	Transformations with dilation	18
	Exercises	21
3	Second-order autonomous systems	23
3.1	Systems of order n	23
3.2	Phase flows of second-order autonomous systems	25
3.3	Fixed points, equilibrium and stability	26
3.4	Separation of variables	28
3.5	Classification of fixed points	32
3.6	Summary of classification	34
3.7	Determination of fixed points	36
3.8	Limit cycles	37
	Exercises	38
4	Conservative Hamiltonian systems of one degree of freedom.	42
4.1	Newtonian and Hamiltonian systems	42
4.2	Conservative systems	44
4.3	Linear conservative systems	45
4.4	The cubic potential	49
4.5	General potential	5 1
4.6	Free rotations	53
4.7	The vertical pendulum	54
4.8	Rotation, libration and periods	56
4.9	Area-preserving flows and Liouville's theorem	57
	Exercises	60

Contents

5	Lagrangians	66
5.1	Introduction	66
5.2	The Legendre transformation	67
5.3	The Lagrangian equation of motion	70
5.4	Formulation	72
	Exercises	78
6	Transformation theory	84
6.1	Introduction	84
6.2	The theory of time-independent transformations	84
6.3	The $F_1(Q, q)$ generating function	87
6.4	Other forms of generating function	89
6.5	The transformed Hamiltonian	92
6.6	Time-dependent transformations	94
6.7	Hamiltonians under time-dependent transformations	96
6.8	Group property and infinitesimal canonical transformations	97
	Exercises	99
7	Angle-action variables	103
7.1	The simplest variables	103
7.2	The Hamiltonian in angle-action representation	106
7.3	The dependence of the angle variable upon q	110
7.4	Generating functions	112
7.5	Rotations	114
	Exercises	116
8	Perturbation theory	122
8.1	Introduction	122
8.2	First-order perturbation theory for conservative Hamiltonian	122
	systems	125
	Exercises	133
9	Adiabatic and rapidly oscillating conditions	
9.1	Introduction	141
9.2	Elastic ball bouncing between two slowly moving planes	141
9.3	The linear oscillator with a slowly changing frequency	142
9.4	General adiabatic theory	144
9.5	Motion in a rapidly oscillating field: fast perturbations	149 153
	Exercises	157
10	Linear Systems	
0.1	Introduction	163
0.2	First-order systems	163
0.3	Forced linear oscillator	163
0.4	Propagators	170
0.5	Periodic conditions and linear maps	173
0.6	Linear area-preserving maps	179 181
-	F	101

Contents

10.7	Periodic forces and parametric resonance	186
	Exercises	191
11	Chaotic motion and non-linear maps	197
11.1	Chaotic motion	197
11.2	Maps and discrete time	198
11.3	The logistic map	199
11.4	Quadratic area-preserving maps	205
11.5	Regular and chaotic motion of Hamiltonian systems	213
	Exercises	214
	Appendix 1 Existence theorems	216
	Appendix 2 Integrals required for some soluble problems.	219
	Index	223