Índice de contenidos

Ír	idice	de contenidos	v
Ír	idice	de figuras	xi
Ín	dice	de tablas	$\mathbf{x}\mathbf{v}$
Ín	idice	de símbolos	xvii
\mathbf{R}	esum	nen 2	cxiii
\mathbf{A}	bstra	act	$\mathbf{x}\mathbf{x}\mathbf{v}$
\mathbf{A}	grade	ecimientos x	xvii
1.	Intr	roducción	1
	1.1.	Motivación	1
	1.2.	Microestructura	2
		1.2.1. Caracterización de la microestructura	4
	1.3.	Transmisión de neutrones	5
		1.3.1. Efectos de la microestructura sobre la transmisión de neutrones	6
	1.4.	Objetivos de la Tesis	9
	1.5.	Organización de la Tesis	9
Ι	Co	onceptos básicos	11
2.	Teo	ría de transmisión de neutrones	13
	2.1.	Técnica de transmisión de neutrones	13
	2.2.	Coeficientes de atenuación	15
		2.2.1. Coeficiente de atenuación debido a la absorción	16
		2.2.2. Coeficiente de atenuación debido a los procesos de dispersión	16
	2.3.	Validez de la teoría cinemática de la dispersión	18
		2.3.1. Efectos de extinción	19

vi		Índice de conten	idos
3. Ex	perime	ntos de transmisión de neutrones	21
3.1	. Aplica	ación de la técnica de transmisión de neutrones	21
3.2	. Carac	terísticas generales de los neutrones	23
3.3	. Produ	cción y moderación de neutrones	24
3.4	. Detec	ción de neutrones	26
3.5	. Técnic	ca de tiempo de vuelo	28
3.6	. Instru	mentos	29
	3.6.1.	ENGIN-X	29
	3.6.2.	LINAC	32
ŗ	Fransn	nisión de neutrones a través de materiales mono	-
rista	alinos		35
. Tra	ansmisi	ón de neutrones a través de cristales mosaico	37
4.1	. Disper	rsión elástica coherente en cristales perfectos	37
	4.1.1.	Ley de Bragg	39
4.2	. Crista	les mosaico	40
	4.2.1.	Modelo de cristal mosaico	40
	4.2.2.	Cristales mosaico usados como monocromadores	42
4.3	. Exper	imento de transmisión en muestras mosaico	43
	4.3.1.	Espectro de transmisión de neutrones en cristales mosaico	44
4.4	. Comp	onente $R(\lambda)$	46
	4.4.1.	Forma del pico	47
	4.4.2.	Posición de los picos	48
	4.4.3.	Ancho de los picos	48
4.5	. Comp	onente $R(\lambda)$ para un monocromador de cobre $\ldots \ldots \ldots$	50
Ca	racteriz	zación de muestras mosaico por transmisión de neutrones	53
5.1	. Model	lo paramétrico de refinamiento de patrón completo	53
5.2	. Exper	imentos	55
	5.2.1.	Monocromador de cobre	56
	5.2.2.	Meteorito de FeNi	61
	5.2.3.	Pirita	64
5.3	. Discus	sión	70
	5.3.1.	Intervalo de longitud de onda óptimo	71
•	5.3.2.	Precisión en el parámetro de red	72
	5.3.3.	Factores de extinctión refinados	73

Índice de contenidos

6 .	Car 6.1. 6.2. 6.3. 6.4. 6.5.	cacterización de oligocristales por transmisión de neutronesModelo de oligocristales	75 75 76 77 81 83
	001		00
II ta	I Z lino	Fransmisión de neutrones a través de materiales policris s	8- 87
8.	Tra	nsmisión de neutrones a través de polvos	89
	8.1.	Dispersión elástica coherente	89
	8.2.	Experimento de transmisión de neutrones a través de polvos	92
	8.3.	Componente de dispersión a ángulo pequeño	94
9.	Tra	nsmisión de neutrones a través de materiales porosos	97
	9.1.	Sólidos porosos	97
		9.1.1. Grafitos empleados en la industria nuclear	98
		9.1.2. Técnicas de caracterización de la porosidad	99
	9.2.	Experimentos de transmisión en grafitos porosos	100
		9.2.1. Muestras de grafito estudiadas	101
		9.2.2. Experimentos	103
	9.3.	Sección eficaz total de grafitos	104
	9.4.	Sección eficaz de dispersión a ángulos pequeños	105
		9.4.1. Modelo de poros esféricos para grafitos de interés nuclear	106
	9.5.	Caracterización de grafitos porosos por transmisión de neutrones	108
		9.5.1. Ajuste de la sección eficaz total	109
	9.6.	Discusión	110
	9.7.	Conclusiones	110
10.	Trai	nsmisión de neutrones a través de materiales metálicos	113
	10.1.	Materiales texturados	113
		10.1.1. Técnicas de caracterización de la textura cristalográfica	115
	10.2.	Experimento de transmisión de neutrones a través de materiales texturados	116
	10.3.	Sección eficaz total de materiales texturados	119
	10.4.	Ejemplos de aplicación en materiales de interés nuclear	121
		10.4.1. Aleaciones de aluminio de alta resistencia	124
		10.4.2. Aceros de embutido profundo	127

VI	11	
VI	11	

Índice de contenidos

10.4.3. Aleaciones de circonio
10.5. Discusión $\ldots \ldots 142$
10.5.1. Efecto de la variación espacial de la textura cristalográfica \ldots 142
10.5.2. Altura de los bordes de Bragg
10.5.3. σ_{el}^{coh} entre bordes de Bragg
11. Caracterización de la textura cristalografica por difraccion de neutro-
nes 145
11.1. Introducción
11.1.1. Escáner de neutrones
11.2. Metodología para el análisis de la textura
11.2.1. Subdivisión de bancos y cobertura angular
11.2.2. Figuras de polos directas e inversas
11.2.3. Espectro de transmisión de neutrones
11.3. NyRTex
11.4. Experimentos
11.4.1. Réplica de bronce antiguo $\dots \dots \dots$
11.4.2. Pernos de cobre de buques de guerra de la era Napoleónica 🛛 . 157
11.4.3. Aceros de embutido profundo
11.4.4. Aleaciones de aluminio de alta resistencia
11.4.5. Chapas de aluminio soldadas
11.4.6. Tubos de presión Zr-2,5 %Nb
11.5. Discusión
11.5.1. Función de transparencia
11.5.2. Esquema de grillado de detectores virtuales
11.5.3. Resolución angular de la ODF
11.5.4. Número de orientaciones necesarias
11.5.5. Número de figuras de polos
11.5.6. Tiempos de contaie \ldots \ldots \ldots \ldots \ldots 178
11.6. Conclusiones
12. Caracterización de la textura cristalográfica por transmisión de neu-
trones 181
12.1. Bordes de Bragg
12.2. Metodología de análisis de textura empleando la altura de los bordes de
Bragg
12.2.1. Forma de los bordes de Bragg

12.2.2. Ajuste de los bordes de Bragg18312.2.3. Aplicación del modelo en NyRTex184

~

Índice de contenidos	ix		
12.2.4. Experimentos	. 185		
12.2.5. Discusión	. 187		
12.3. Metodología de análisis de textura empleando la forma de σ^{coh}_{el}			
bordes de Bragg	. 188		
12.3.1. Componentes de textura unimodales	. 188		
12.3.2. Modelo de sección eficaz elástica coherente con componentes un	i-		
modales mosaico	. 189		
12.3.3. Discusión	. 193		
12.4. Conclusiones	. 193		
13.Conclusiones PARTE III	195		
IV Conclusiones	199		
14.Conclusiones generales y comentarios finales	201		
Bibliografia	207		
A. Teoría cinemática de dispersión de neutrones	219		
A.1. Experimentos de dispersión de neutrones	. 219		
A.2. Sección eficaz doble diferencial	. 220		
A.3. Longitud de dispersión	. 221		
A.4. Dispersión por un sistema de núcleos	. 222		
A.5. Dispersión coherente e incoherente	. 223		
A.5.1. Leyes de dispersión	. 225		
A.6. Sección eficaz de dispersión	. 226		
B. Expresiones teóricas	227		
B.1. Factor de estructura	. 227		
B.2. Coeficiente de atenuación debida a la dispersión	. 227		
C. Textura cristalográfica	231		
C.1. Descripción cuantitativa	. 231		
C.2. Descripción cuantitativa	. 232		
C.3. Función de distribución de las orientaciones	. 234		
C.4. Figuras de polos directas e inversas	. 234		
C.5. Representación de la textura cristalográfica	. 237		
D. Publicaciones asociadas a esta Tesis	239		