Índice General

Agradecimientos								
Re	Resumen Abstract v							
\mathbf{A}								
Pı	rólog	0	xi					
1	Intr	oducción general	1					
	1.1	Aleaciones semiconductoras del grupo IV	1					
	1.2	Superconductores basados en hierro	6					
	1.3	Superconductores basados en ${\rm BiS}_2$	15					
Pa	arte]	I: Aleaciones semiconductoras del grupo IV	21					
2	Estructura electrónica de aleaciones binarias $\mathbf{Ge}_{1-x}\mathbf{Sn}_x$							
	2.1	Introducción	23					
	2.2	Incorporación de defectos no-sustitucionales complejos $\beta\mbox{-}Sn$ en el cálculo de es-						
		tructura electrónica de $Ge_{1-x}Sn_x$	24					
	2.3	Transición de gap indirecto a gap directo en $Ge_{1-x}Sn_x$	32					
	2.4	Efecto de β -Sn en la estructura electrónica	36					
		2.4.1 Estructura electrónica para la componente Ge+ α -Sn de la aleación bina-						
		ria efectiva	36					
		2.4.2 TB+VCA extendida incluyendo defectos α -Sn y β -Sn	39					
	2.5	Resultados principales	44					
3	Esti	Estructura electrónica de aleaciones ternarias $Ge_{1-x-y}Si_xSn_y$						
	3.1	Introducción	47					
	3.2	Método TB+VCA para aleaciones ternarias $Ge_{1-x-y}Si_xSn_y$	47					
	3.3	Resultados y discusión	49					
	3.4	Resultados principales	58					

Pa	arte i con	II: Nu puest	evos Superconductores: ferropníctidos y calcogen uros de hierro, y os basados en ${\rm BiS}_2$	⁷ 59						
4	Descripción de los nuevos superconductores: modelo microscópico con 2 ban-									
	das	efectiv	vas correlacionadas	61						
	4.1	Introd	lucción	61						
	4.2	Model	o microscópico correlacionado	61						
	4.3	Trata	miento perturbativo del modelo microscópico	63						
5	Dependencia con dopaje y temperatura de las propiedades espectrales de los									
	sup	erconc	luctores ferrophictidos	67						
	5.1	Introd		67						
	5.2	Antec	edentes	68						
	5.3	Mode	o de Raghu <i>et al.</i> para los orbitales efectivos de superconductores fer-	70						
	F 4	ropnic		70						
	5.4	Result	ados y discusion	(2						
		5.4.1	Efecto de las interacciones de Coulomb intra- e inter-orbitales sobre la densidad de estados total $A(\omega)$	73						
		5.4.2	Efectos del dopaje sobre la estructura electrónica	77						
		5.4.3	Efecto de la temperatura sobre la estructura electrónica	83						
		5.4.4	Análisis de la autoenergía $\Sigma(\vec{k},\omega)$ y el peso de cuasipartícula en el nivel de Ferrei	20						
			de Fermi	89						
	5.5	Result	ados principales	99						
6	Pro	piedac	les electrónicas del estado normal de superconductores	3						
	LaC	$\mathbf{D}_{1-x}\mathbf{F}_x$	$3iS_2$	101						
	6.1	Introd		101						
	6.2	Model	o de Usui <i>et al.</i> para los orbitales efectivos no-correlacionados en super-	100						
	C D	condu	ctores basados en $B1S_2$	102						
	0.3	Result		104						
		6.3.1	Efecto de las interacciones coulombianas intra- e inter-orbitales sobre la estructura electrónica y la topología de la superficie de Fermi	105						
		639	Dependencia con momento \vec{k} de la densidad espectral $A(\vec{k}, y)$	110						
		622	Effecte del donaio con electrones sobre la DOS	110						
		0.0.0 6 2 4	Efecto de la temporatura sobre la DOS y la densidad espectral	112 119						
	6.4	0.0.4 Docul4	Electo de la temperatura sobre la DOS y la delisidad espectral	110						
	0.4	nesun		119						

7	Mag	gnetotransporte en el estado normal de superconductores β -FeSe	121		
	7.1 Introducción				
	7.2 Cálculo de las propiedades de magnetotransporte de los compuestos FeSe				
		7.2.1 Modelo microscópico mínimo con dos orbitales para FeSe \hdots	122		
		7.2.2 Cálculo del tensor de conductividad eléctrica y el coeficiente de Hall	124		
	7.3	Resultados y discusión	126		
	7.4	Resultados principales	132		
8	Con	onclusiones generales 133			
\mathbf{A}	Apr	oximación de enlace fuerte para semiconductores del grupo IV.	141		
в	B Método de Chadi-Cohen para sumas sobre sobre la primera zona de Br				
	loui	n	149		
С	Desacoplamiento de las ecuaciones de movimiento para las funciones de				
	Gre	en	157		
D	Cálo	culo de la conductividad eléctrica	169		
Ar	iexos	: Difusión de resultados de la tesis	193		