CONTENTS

FOREWORD

PF	REFA	CE	ΧV
AC	KNC	DWLEDGMENTS	xxi
LIS	ST O	F ACRONYMS AND SYMBOLS	xxiii
Α		NDAMENTALS, COMPLEMENTS, AND DEVELOPMENTS: YSICS AND MODELING	
1	NΕ\	N ASPECTS IN EDFA MODELING	3
	1.1 1.2	The standard confined-doping (SCD) model CLC / 5 Analytical models and their developments in the saturated regime / 11	
	1.3	Models for transient gain dynamics with WDM applications in EDFA chains / 61	
	1.4	Modeling cladding-pumped Yb ³⁺ -sensitized EDFAs / 74	
2	ORIGIN AND ANALYSIS OF NOISE IN EDFAs		89
	2.1 2.2	Physical origin of the 3 dB noise figure limit / 92	
	4.2	Photon-number states and coherent states / 97	v

ix

Wi	CONTENTS

В

2.3	Fundamental quantum-field-operator model for phase-insensitive coherent light amplification / 111	
2.4	Quantum signal/vacuum-noise beamsplitter model for phase-insensitive coherent light amplification / 122	
2.5	Linear optical amplifier representation through discrete/infinite quantum beamsplitter chains / 131	-
2.6	Power and SNR optimization in linear optical amplifier chains / 135	
2.7	Defining the optical amplifier noise figure / 152	
INF	ORMATION CAPACITY OF OPTICALLY AMPLIFIED SIGNALS	170
3.1	Semiclassical signal/vacuum-noise beamsplitter (SCBS) model for phase-insensitive coherent light amplification / 172	
3.2	Accurate semiclassical definition for bit-error-rate and extrapolation methods / 183	
3.3	Entropy and information capacity in optically amplified signals / 201	
3.4	Quantum model for optical amplification and system nonlinearity noises /	232
SEC	CONDARY PHYSICAL EFFECTS IN EDFAs	242
4.1	Concentration/cluster models / 242	
4.2	Resonant refractive-index changes / 256	
4.3	Room-temperature inhomogeneous broadening / 265	
4.4	Polarization hole-burning and polarization-dependent gain / 277	
4.5	Temperature effects / 298	
	W DESIGNS, DEVELOPMENTS, AND SYSTEM APPLICATIONS EDFAs	
	PLIFIER TECHNOLOGY AND DESIGN FOR TERRESTRIAL ANSMISSION	309
5.1	Wavelength-multiplexed transport networks / 310	
5.2	New amplification windows for WDM transport networks / 390	
5.3	EDFAs for CATV systems / 405	
5.4	Metropolitan and access-networks applications / 407	
	PLIFIER TECHNOLOGY AND DESIGN FOR TRANSOCEANIC	414
6.1	Amplifier self-filtering effect / 415	

	6.2	Operating gain conditions / 425	
	6.3	Use of mid-stage isolator / 428	
	6.4	Pumping configurations / 432	
	6.5	Remotely pumped EDFAs / 440	
	6.6	Distributed raman amplification / 442	
	6.7	Erbium-doped fiber co-dopants / 449	
	6.8	Long-wavelength band operation / 454	
	6.9	Gain-equalizing filters / 456	
	6.10	Signal pre-emphasis / 458	
	6.11	Secondary effects / 460	
7	AMF	PLIFIED TERRESTRIAL NETWORKS	469
	7.1	Fiber bandwidth / 470	
	7.2	Transmission fiber types / 472	
		Linear effects in WDM transmission / 477	
		Nonlinear effects in WDM transmission / 484	
	7.5	Modulation formats / 527	
	7.6	From the origins to massive WDM transmission / 532	
8	AMF	PLIFIED SUBMARINE-CABLE SYSTEMS	555
	8.1	A brief history of submoving coble systems / 555	
	8.2	A brief history of submarine-cable systems / 555 Global submarine communication networks: from pioneering to information-age times / 558	
	8.3	Towards terabit/s systems: the laboratory investigation / 562	
	8.4	Topology, features and examples of main submarine cable systems / 606	
ΑF	PENI	DICES	
,		(
Α	TIM	E-DEPENDENT AVERAGE-INVERSION MODEL	617
В	ANE	RIVATION OF THE OUTPUT PDF AND ASSOCIATED MEAN VARIANCE FOR THE COHERENT SINGLE-PHOTON TIPLIER	623
_	QE.	NO ACCION ON ANTHRA DEARACH ITTED RAODEI	eno
C	SEI	IICLASSICAL QUANTUM-BEAMSPLITTER MODEL	628
D	SEMICLASSICAL DERIVATION OF SYMBOL PDF AND BER OF OPTICALLY AMPLIFIED SIGNALS		634
E	BER EXTRAPOLATION METHOD BASED ON THE LEVEBERG—MARQUARDT NONLINEAR CURVE-FITTING ALGORITHM		

vii	i cont	E١	ITS

vii	CONTENTS	
F	MUTUAL INFORMATION AND EQUIVOCATION IN DISCRETE MEMORYLESS CHANNEL WITH N-SYMBOL ALPHABET	644
G	SYSTEM PERFORMANCE CRITERIA	647
Н	BASIC PRINCIPLES OF ERROR-CORRECTION CODING	650
RE	FERENCES	661
INI	DEX	755

*