Contents, Notation xv | CHAPTER 1 | Introd | duction | 1 | |-----------------------|--------|---|-----| | | 1.1 | What Is a Signal? 1 | | | | 1.2 | What Is a System? 2 | | | | 1.3 | Overview of Specific Systems 2 | | | | 1.4 | Classification of Signals 16 | | | | 1.5 | Basic Operations on Signals 25 | | | | 1.6 | Elementary Signals 34 | | | | 1.7 | Systems Viewed as Interconnections of Operations 53 | | | | 1.8 | Properties of Systems 55 | | | | 1.9 | Noise 68 | | | | 1.10 | Theme Examples 71 | | | | 1.11 | Exploring Concepts with MATLAB 80 | | | | 1.12 | Summary 86 | | | | | Further Reading 86 | | | | | Additional Problems 88 | | | CHAPTER 2 Invariant S | | Domain Representations of Linear Time- | 97 | | | 2.1 | Introduction 97 | | | | 2.2 | The Convolution Sum 98 | | | | 2.3 | Convolution Sum Evaluation Procedure 102 | | | | 2.4 | The Convolution Integral 115 | | | | 2.5 | Convolution Integral Evaluation Procedure 116 | | | | 2.6 | Interconnections of LTI Systems 127 | | | | 2.7 | Relations between LTI System Properties and the Impulse Response 133 | | | | 2.8 | Step Response 139 | | | | 2.9 | Differential and Difference Equation Representations of LTI Systems 141 | | | | 2.10 | Solving Differential and Difference Equations 147 | | | | 2.11 | | 156 | | | 2.12 | Block Diagram Representations 161 | | | | 2.13 | State-Variable Descriptions of LTI Systems 167 | | | | 2.14 | Exploring Concepts with MATLAB 175 | | | | 2.15 | Summary 181 | | | | | Further Reading 182 | | | | | Additional Problems 183 | | | | CON | |--|-----| | CHAPTER 3 | Fouri | er Representations of Signals and Linear | | |--------------|--------|---|-----| | Time-Invari | ant Sy | stems | 195 | | | 3.1 | Introduction 195 | | | | 3.2 | Complex Sinusoids and Frequency Response of LTI Systems 196 | | | | 3.3 | Fourier Representations for Four Classes of Signals 199 | | | | 3.4 | Discrete-Time Periodic Signals: The Discrete-Time Fourier Series 202 | | | | 3.5 | Continuous-Time Periodic Signals: The Fourier Series 215 | | | | 3.6 | Discrete-Time Nonperiodic Signals: The Discrete-Time Fourier Transform | 230 | | | 3.7 | Continuous-Time Nonperiodic Signals: The Fourier Transform 241 | 230 | | | 3.8 | Properties of Fourier Representations 253 | | | | 3.9 | Linearity and Symmetry Properties 254 | | | | 3.10 | Convolution Property 259 | | | | 3.11 | Differentiation and Integration Properties 270 | | | • | 3.12 | Time- and Frequency-Shift Properties 280 | | | | 3.13 | Finding Inverse Fourier Transforms by Using Partial-Fraction Expansions | 286 | | | 3.14 | Multiplication Property 291 | 200 | | | 3.15 | Scaling Properties 299 | | | | 3.16 | Parseval Relationships 303 | | | - | 3.17 | Time-Bandwidth Product 305 | | | | 3.18 | Duality 307 | • | | | 3.19 | Exploring Concepts with MATLAB 312 | | | • | 3.20 | Summary 320 | | | | 3.20 | Further Reading 321 | | | | | Additional Problems 322 | | | | . 4. | | | | CHAPTER 4 | | cations of Fourier Representations to Mixed | | | Signal Class | es | | 341 | | | 4.1 | Introduction 341 | | | | 4.2 | Fourier Transform Representations of Periodic Signals 342 | | | | 4.3 | Convolution and Multiplication with Mixtures of Periodic | | | | | and Nonperiodic Signals 348 | | | | 4.4 | Fourier Transform Representation of Discrete-Time Signals 358 | | | | 4.5 | Sampling 362 | | | | 4.6 | Reconstruction of Continuous-Time Signals from Samples 371 | | | | 4.7 | Discrete-Time Processing of Continuous-Time Signals 382 | | | | 4.8 | | 889 | | | 4.9 | | 396 | | | 4.10 | Efficient Algorithms for Evaluating the DTFS 404 | 370 | | | 4.11 | Exploring Concepts with MATLAB 408 | | | | 4.12 | Summary 411 | | | | | Further Reading 412 | | | | | Additional Problems 413 | | | CONTENTS | . * | |----------|-----| | CONTENTS | | | CHAPTER 5 | Application to Communication Systems | 425 | |-----------|---|-----| | | 5.1 Introduction 425 | | | | 5.2 Types of Modulation 425 | | | | 5.3 Benefits of Modulation 429 | | | | 5.4 Full Amplitude Modulation 431 | ~ | | | 5.5 Double Sideband-Suppressed Carrier Modulation 440 | | | | 5.6 Quadrature-Carrier Multiplexing 445 | | | | 5.7 Other Variants of Amplitude Modulation 446 | | | | 5.8 Pulse-Amplitude Modulation 451 | | | | 5.9 Multiplexing 455 | | | | 5.10 Phase and Group Delays 460 | | | | 5.11 Exploring Concepts with MATLAB 464 | | | | 5.12 Summary 474 | | | | Further Reading 475 | | | | Additional Problems 476 | | | CHAPTER 6 | Paragonting Signals In Using Continuous Time | a | | _ | Representing Signals by Using Continuous-Timo
xponentials: the Laplace Transform | 482 | | | | - | | | 6.1 Introduction 482 | | | | 6.2 The Laplace Transform 482 | | | | 6.3 The Unilateral Laplace Transform 490 | - | | | 6.4 Properties of the Unilateral Laplace Transform 491 | | | | 6.5 Inversion of the Unilateral Laplace Transform 496 | | | | 6.6 Solving Differential Equations with Initial Conditions 501 | | | | 6.7 Laplace Transform Methods in Circuit Analysis 506 | | | | 6.8 Properties of the Bilateral Laplace Transform 509 | | | | 6.9 Properties of the Region of Convergence 512 | | | | 6.10 Inversion of the Bilateral Laplace Transform 516 6.11 The Transfer Function 520 | | | | | | | | 6.12 Causality and Stability 5236.13 Determining the Frequency Response from Poles and Zeros | 528 | | | 6.14 Exploring Concepts with MATLAB 541 | 320 | | | 6.15 Summary 544 | | | | Further Reading 546 | | | | Additional Problems 546 | | | | Additional Flobletits 340 | | | CHAPTER 7 | Representing Signals by Using Discrete-Time | | | _ | xponentials: the z-Transform | 55: | | A | | | | | 7.1 Introduction 553 | | | | 7.2 The z-Transform 553 | | | xii | CONTENTS | | | CONTENTS | | |-----------|--|-----|--|---|------------| | | 7.3 Properties of the Region of Convergence 561 | | | 9.8 Operational Amplifiers 673 | | | | 7.4 Properties of the <i>z</i> -Transform 566 | | | 9.9 Control Systems 679 | | | | 7.5 Inversion of the z-Transform 572 | | | 9.10 Transient Response of Low-Order Systems 682 | | | | 7.6 The Transfer Function 579 | | | 9.11 The Stability Problem 685 | | | | 7.7 Causality and Stability 582 | | | 9.12 Routh-Hurwitz Criterion 688 | ~ | | | 7.8 Determining the Frequency Response from Poles and Zeros 5 | 88 | | 9.13 Root Locus Method 692 | | | | 7.9 Computational Structures for Implementing Discrete-Time | | | 9.14 Nyquist Stability Criterion 700 | | | | LTI Systems 594 | | | 9.15 Bode Diagram 707 | | | | 7.10 The Unilateral z-Transform 598 | | | 9.16 Sampled-Data Systems 7119.17 Exploring Concepts with MATLAB 721 | | | | 7.11 Exploring Concepts with MATLAB 602 | | | 9.17 Exploring Concepts with MATLAB 7219.18 Summary 725 | | | | 7.12 Summary 606 | | | Further Reading 725 | | | | Further Reading 606 | | | Additional Problems 727 | | | | Additional Problems 607 | | 等度
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
10000年
10000年
10000年
10000年
10000年
10000年
10000000000 | Additional Froblems 727 | | | CHAPTER 8 | Application to Filters and Equalizers | 614 | E CHAPTER 10 | Epilogue | 737 | | <u> </u> | 8.1 Introduction 614 | | | 10.1 Introduction 737 | | | | 8.2 Conditions for Distortionless Transmission 614 | | | 10.2 Speech Signals: An Example of Nonstationarity 738 | | | • | 8.3 Ideal Low-Pass Filters 616 | | | 10.3 Time-Frequency Analysis 739 | | | | 8.4 Design of Filters 623 | | では、
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
1000年
10 | 10.4 Nonlinear Systems 750 | | | | 8.5 Approximating Functions 624 | | | 10.5 Adaptive Filters 757 | | | | 8.6 Frequency Transformations 630 | - | | 10.6 Concluding Remarks 760 | | | | 8.7 Passive Filters 633 | | | Further Reading 760 | | | | 8.8 Digital Filters 634 | | | | | | • | 8.9 FIR Digital Filters 635 | | APPENDIX A | Selected Mathematical Identities | 763 | | | 8.10 IIR Digital Filters 645 | • | | | | | | 8.11 Linear Distortion 649 | | | A.1 Trigonometry 763 | | | | 8.12 Equalization 650 | | 100 AND | A.2 Complex Numbers 764 | | | | 8.13 Exploring Concepts with MATLAB 653 | | | A.3 Geometric Series 765 | | | | 8.14 Summary 658 | • | SANTANIA
SANTANIA | A.4 Definite Integrals 765 | | | | Further Reading 659 | | · 电影响 | A.5 Matrices 766 | | | | Additional Problems 660 | | · 医铁板板 | | | | | . The state of | | APPENDIX B | Partial-Fraction Expansions | 767 | | CHAPTER 9 | Application to Linear Feedback Systems | 663 | | B.1 Partial-Fraction Expansions of Continuous-Time | | | | | | Washelidan | Representations 767 | | | | 9.1 Introduction 663 | | indicate to the second | B.2 Partial-Fraction Expansions of Discrete-Time | | | | 9.2 What Is Feedback? 663 | | 7
- 100
- 100
- 110 | Representation 770 | | | | 9.3 Basic Feedback Concepts 666 | | The state of s | | | | | 9.4 Sensitivity Analysis 668 | | APPENDIX C | Tables of Fourier Representations and Properties | 773 | | | 9.5 Effect of Feedback on Disturbance or Noise 670 | | <u> </u> | · · · · · · · · · · · · · · · · · · · | | | | 9.6 Distortion Analysis 671 | | 338 | C.1 Basic Discrete-Time Fourier Series Pairs 773 | | | | 9.7 Summarizing Remarks on Feedback 673 | | 78%-60mm | C.2 Basic Fourier Series Pairs 774 | | | APPENDIX E | Tables of z-Tansforms and Properties | | 784 | |------------|---|---|-----| | | D.1
D.2 | Basic Laplace Transforms 781
Laplace Transform Properties 782 | | | APPENDIX D | Tables of Laplace Transforms and Properties | | 781 | | | C.3
C.4
C.5
C.6
C.7
C.8
C.9 | Basic Discrete-Time Fourier Transform Pairs 774 Basic Fourier Transform Pairs 775 Fourier Transform Pairs for Periodic Signals 775 Discrete-Time Fourier Transform Pairs for Periodic Signals 776 Properties of Fourier Representations 777 Relating the Four Fourier Representations 779 Sampling and Aliasing Relationships 779 | | Variables and Variable Names Vectors and Matrices Plotting in MATLAB Additional Help 791 M-files 790 787 **793** 787 789 F.2 F.3 F.4 F.5 F.6 INDEX