Índice

Resumen Abstract

۱.	Introducción1
	1.1. Neuronas
	1.2. La membrana plasmática
	1.3. Excitabilidad neuronal
	1.3.1. Movimiento de partículas e iones en solución2
	1.3.2. Gradientes electroquímicos y el potencial de membrana:
	Ecuación de Nernst4
	1.3.3. Canales iónicos5
	1.3.4. Potenciales iónicos
	1.3.5 Circuito equivalente a la membrana
	1.3.6 Análisis de Hodgkin y Huxley del axón gigante de calamar i i
	1.3.7 Modelo de Hodgkin y Huxley ¹⁵
	1.4 Antecedentes v motivación
	1.4.1 Canalonatias
	1.4.1.1. Control del comportamiento sub-umbral de neuronas
	talamocorticales ²³
	1.4.1.2. Epilepsia de ausencia25
	1 4 2 Métodos en electrofisiología ³⁰
	1 4 2 1. Voltage-Clamp ³¹
	1 4 2 2. Current-Clamp32
	1 4 2.3. Dynamic-Clamp32
2.	Metodología
	2.1 Software
	2 1 1. Selección de software ³⁶
	2.1.2. Adaptación del paquete StpdC para el estudio de conductancias
	de neuronas talamocorticales ³⁹
	2.2. Modelado de conductancias
	2.2.1. Modelado de la corriente catiónica activada por hiperpolarización
	lh40
	2.2.2 Modelado de la corriente rectificadora lKir44
	2.3. Implementación del sistema Dynamic-Clamp
	2.4 Evaluación del Dynamic-Clamp en una célula modelo ⁴⁸
	2.5 Evaluación del Dynamic-Clamp en células tálamo-corticales reales49
	2.6 Registros electrofisiológicos
	2.7 Simulaciones en NEURON52
3	Posultados53
_	3.1 Adición de una conductancia activada por hiperpolarización (In) en una
	célula modelo53

	3.2. Adición de una conductancia de potasio rectificadora de entrada en u	
	célula modelo	57
	3.3. Adición de Ih en una célula tálamo-cortical real	61
4.	Discusión y conclusiones	66
5.	Bibliografía	69
6.	Apéndice	72