Contents

List of Symbols xxv

To the Student xxix

PART I Fundamentals

1. Basic Concepts and Definitions 1

- 1.1 What is Engineering? 1
- 1.2 What is Thermodynamics? 3
- 1.3 Definition of Engineering Thermodynamics 6
- 1.4 Applications of Engineering Thermodynamics 6
- 1.5 Relevancy of Other Engineering Sciences 16
- 1.6 Macroscopic and Microscopic Views of Matter 16
- 1.7 Dimensions and Units 18
- 1.8 Thermodynamic Systems 23
- 1.9 Thermodynamic Properties 25
- 1.10 Thermodynamic Equilibrium and Equilibrium States 27
- 1.11 Thermodynamic Processes 28
- 1.12 Temperature, the Zeroth Law of Thermodynamics, and Thermal Equilibrium 30
- 1.13 Pressure and Mechanical Equilibrium 33
- 1.14 Chemical Potential and Chemical Equilibrium 35
- 1.15 Simple Structure of Engineering Thermodynamics 36
- **1.16** General Methodology for Problem Solving in Engineering Thermodynamics **39**

Problems 40

2. Energy and the First Law of Thermodynamics 49

- 2.1 Energy Content 49
- 2.2 Conservation of Mass 53
- 2.3 First Law of Thermodynamics for a Closed System 54
- 2.4 First Law of Thermodynamics for Cyclic Processes 56
- 2.5 Thermodynamic Definition of Work 59
- 2.6 Sign Convention for Work 60
- 2.7 Quasi-static Work of Expansion 60
- 2.8 Other Quasi-static Work Modes 65
- 2.9 Summary of Work Interactions 67
- 2.10 Thermodynamic Definition of Heat 68
- 2.11 Enthalpy—A Thermodynamic Property 69
- 2.12 First Law of Thermodynamics for an Open System 70
- 2.13 Conservation of Mass for an Open System 74
- 2.14 Thermodynamic Reservoirs 75
- 2.15 Fundamental Nature of Energy 76 Problems 77

3. Entropy and the Second Law of Thermodynamics 87

- 3.1 Entropy and Quality of Energy 87
- 3.2 Entropy Change of a Work Reservoir 89
- 3.3 Entropy Change of a Heat Reservoir 90
- 3.4 Heat Transfer Between Two Heat Reservoirs 91
- 3.5 Efficiencies of Heat Engines 92
- 3.6 Efficiencies of Refrigerators and Heat Pumps 97
- 3.7 Examples of Irreversible Processes 99
- 3.8 Second Law of Thermodynamics for a Closed System 103

- 3.9 Second Law of Thermodynamics for an Open System 105
- 3.10 The Concept of Lost Work 107
- 3.11 Entropy, Equilibrium, and Direction of Change 112
- 3.12 Fundamental Nature of Entropy 116

Problems 117

4. Equations of State of a Pure Substance in Graphical and Tabular Forms **125**

- 4.1 The State Postulate 126
- 4.2 Definition of a Pure Substance 127
- 4.3 State Postulate of a Simple Compressible Substance 128
- 4.4 Some Important General Thermodynamic Relations for a Simple Compressible Substance 130
- **4.5** The *p-v-T* Surface of a Simple Compressible Substance **132**
- **4.6** Thermodynamic Diagrams for a Simple Compressible Substance **136**
- 4.7 Constant-Volume Specific Heat and Constant-Pressure Specific Heat 145
- 4.8 Tables of Thermodynamic Properties for a Simple Compressible Substance 147
- 4.9 Interpolation of Tabulated Data 150
- 4.10 Examples on Property Evaluation and on Property Changes Due to a Change of State 154

Problems 168

ì

5. Behavior and Thermodynamic Properties of Ideal Gases 177

- 5.1 Definition of an Ideal Gas 177
- 5.2 Important Consequences of the Ideal-Gas Model 183
- 5.3 Internal Energy Change of an Ideal Gas 184
- 5.4 Enthalpy Change of an Ideal Gas 185

- 5.5 Specific Heats of an Ideal Gas 185
- 5.6 Entropy Change of an Ideal Gas 187
- 5.7 Thermodynamic Diagrams for an Ideal Gas 190
- 5.8 Tabulation of Thermodynamic Properties for an Ideal Gas 193
- 5.9 Isentropic Process for an Ideal Gas 198
- 5.10 Reversible Polytropic Process for an Ideal Gas 199

Problems 204

6. Some Consequences of the Second Law of Thermodynamics with an Introduction to Multicomponent Systems 213

- 6.1 Carnot Cycle and Thermodynamic Temperature Scale 213
- 6.2 Carnot Cycle Using an Ideal Gas as the Working Fluid 217
- 6.3 Equivalence of the Thermodynamic and Ideal-Gas Empirical Temperature 219
- 6.4 Absolute Zero, Absolute Entropy, and the Third Law of Thermodynamics 221
- 6.5 The Inequality of Clausius 224
- 6.6 Quasi-static Heat Transfer for a Closed System 226
- 6.7 Another Look at the Entropy Change of a Heat Reservoir 229
- 6.8 The Concept of Availability 230
- 6.9 Availability for Steady-State Steady Flow 237
- 6.10 Chemical Potential and the Gibbs Function 243
- 6.11 Temperature As the Driving Force for Heat Transfer 247
- 6.12 Pressure As the Driving Force for Volume Change 249
- 6.13 Chemical Potential As the Driving Force for Matter Flow 250
- 6.14 Gibbs Phase Rule for Nonreacting System 252

Problems 254

PART II Applications

7. Engineering Analysis of Processes for Closed Systems 267

- 7.1 Constant-Volume Process 267
- 7.2 Constant-Pressure Process 274
- 7.3 Isothermal Process 278
- 7.4 Adiabatic Process 282
- 7.5 Constant-Internal-Energy Process 283 Problems 284

8. Engineering Analysis of Processes for Open Systems 297

- 8.1 Unique Characteristics of Open Systems with Steady-State Steady Flow 297
- 8.2 Functional Classifications of Steady-State Steady-Flow Devices 298
- 8.3 Ideal Shaft Work for a Steady-State Steady-Flow Device 299
- 8.4 Pumps and Compressors 300
- 8.5 Turbines 303
- 8.6 Throttling Devices 308
- 8.7 Heat Exchangers 313
- 8.8 Steady-Flow Open Systems Consisting of More Than One Steady-State Steady-Flow Device 323
- 8.9 Open Systems with Non-Steady-State Steady Flow 342Problems 353

9. Thermodynamics of One-Dimensional Steady Flow of Fluids **369**

- 9.1 Energy Equation for One-Dimensional Steady Flow with No Work Transfer 370
- 9.2 Bernoulli Equation for Incompressible Fluid 376

- 9.3 Derivation of the Bernoulli Equation from the Momentum Principle 378
- 9.4 Sonic Velocity and Mach Number 386
- 9.5 Stagnation Properties 391
- 9.6 Variation of Velocity and Pressure for Adiabatic Flow Through Passage with Varying Area 393
- 9.7 Nozzle and Diffuser Efficiencies 396
- 9.8 Mass Flow Through a Converging Nozzle 403
- 9.9 Adiabatic Flow in Constant-Area Pipe 408 Problems 415

10. Availability, Irreversibility, and Availability Analysis of Engineering Processes **425**

- 10.1 Availability (Exergy) Equation for a Closed System 426
- 10.2 Second-Law Analysis of Closed Systems 429
- 10.3 Availability (Exergy) Equation for an Open System 438
- 10.4 Second-Law Analysis of Open Systems 440
- 10.5 Second-Law Efficiency 448 Problems 469

11. Power-Producing, Combined-Cycle, and Cogeneration Systems **481**

11.1 Decision Making in Power-Plant Design 481

Vapor Power Cycles

- 11.2 Carnot Vapor Cycle 484
- 11.3 Simple Rankine Cycle 486
- 11.4 Rankine Cycle with Superheat 494
- 11.5 Rankine Cycle with Reheat 503
- 11.6 Rankine Cycle with Regenerative Feedwater Heating 506
- 11.7 Alternative Working Fluids for Vapor Power Cycles 513

Gas Power Cycles

- 11.8 Air-Standard Cycles 513
- 11.9 Carnot Gas Cycle 515
- 11.10 Otto Cycle 520
- 11.11 Diesel Cycle 524
- 11.12 Wankel Rotary Combustion Engine 528
- 11.13 Stirling Cycle 531
- 11.14 Brayton Cycle 533
- 11.15 Simple Gas-Turbine Power Plant with Real Compressor and Turbine 537
- 11.16 Closed-Cycle Gas-Turbine Power Plant with Real Compressor and Turbine and Pressure Drops in Heat Exchangers 541
- 11.17 Brayton Cycle with Regenerative Heating 550
- 11.18 Regenerative Gas-Turbine Power Plant with Real Compressor, Turbine, Generator, and Pressure Drops in Heat Exchangers 552
- 11.19 Thermal Efficiency of a Combined Power Plant 561
- 11.20 Cogeneration Systems 563
- 11.21 Gas-Turbine Cogeneration System 566
- 11.22 The Cheng Cycle Engine and Cogeneration 575 Problems 576

12. Refrigeration and Heat Pump Systems **595**

- 12.1 Decision Making in Refrigeration System Design 597
- 12.2 Reversed Carnot Cycle 598
- 12.3 Vapor-Compression Refrigeration Cycle 599
- 12.4 Gas Refrigeration Cycle 602
- **12.5** Gas Refrigeration Cycle with Real Compressor, Turbine, and Pressure Drops in Heat Exchangers **606**
- 12.6 Reversed Brayton Cycle with Regenerative Heat Transfer 611

- 12.7 Regenerative Gas Refrigeration Cycle with Real Compressor, Turbine, and Pressure Drops in Heat Exchangers 614
- 12.8 Production of Refrigeration Using Heat Instead of Work 619
- 12.9 Absorption Refrigeration System 621
- 12.10 Production of Low-Temperature Heat Using a Power Generation-Heat Pump System 623
- 12.11 Heat Pumps 625

Problems 626

13. Thermodynamics of a Simple Compressible Substance **635**

- 13.1 Important Mathematical Relations 635
- 13.2 Maxwell Relations 636
- 13.3 Some Quantities Derivable from *p-v-T* Data 637
- 13.4 Some Thermodynamic Relations Involving Specific Heats 640
- 13.5 Effect of Pressure and Volume Changes on Specific Heats 645
- **13.6** Some Thermodynamic Relations for Changes in Entropy, Internal Energy, and Enthalpy **648**
- 13.7 Joule-Thomson Coefficient 650
- 13.8 Clapeyron Equation 653
- 13.9 Behavior of a van der Waals Gas 657
- 13.10 Real Gases and the Compressibility Factor 660
- 13.11 Generalized Enthalpy Chart for Real Gases 663
- 13.12 Generalized Entropy Chart for Real Gases 666
- 13.13 Fugacity and the Fugacity Function 668
- 13.14 Virial Equation of State 672

Problems 673

14. Nonreactive Mixtures: Gas–Gas and Gas– Vapor **683**

- 14.1 Mole Fraction, Mass Fraction, and Molecular Weight of a Mixture 683
- 14.2 Dalton's Rule of Partial Pressure 685
- 14.3 Amagat-Luduc Rule of Partial Volume 687
- 14.4 Internal Energy, Enthalpy, and Specific Heats of an Ideal-Gas Mixture 690
- 14.5 Entropy of an Ideal-Gas Mixture 694
- 14.6 Mixtures of Ideal Gases and a Condensable Vapor 699
- 14.7 Determination of Vapor Pressure of Water and Dew-Point Temperature 704
- 14.8 Enthalpy and Entropy of an Air-Water-Vapor Mixture 706
- 14.9 Adiabatic Saturation Process 708
- 14.10 Psychrometric Chart 714
- 14.11 Processes Involving Air-Water-Vapor Mixtures 715
- 14.12 Real-Gas Mixtures 730

Problems 732

15. Chemical Reactions and Reactive Mixtures 743

- 15.1 Stoichiometry and the Chemical Equation 744
- 15.2 Basic Combustion Equations for Fossil Fuels 744
- 15.3 Theoretical Air, Excess Air, and Air–Fuel Ratio 745
- 15.4 Analysis of the Products of Combustion 748
- 15.5 Energy Balance for Steady-State Steady-Flow Systems with Chemical Reactions 750
- 15.6 Enthalpy of Reaction and Heating Values of Fuels 751
- 15.7 Enthalpy of Formation 756

.

15.8 Applications of the First Law to Steady-State Steady-Flow Systems with Chemical Reactions **759**

xxii Contents

- 15.9 Absolute Entropy and the Third Law of Thermodynamics 768
- 15.10 Applications of the Second Law to Steady-State Steady-Flow Systems with Chemical Reactions 769
- 15.11 Standard Gibbs Function of Formation 776
- 15.12 Chemical Equilibrium 779
- 15.13 Equilibrium Constant of a Reactive Mixture of Ideal Gases 782
- 15.14 Temperature Dependence of the Equilibrium Constant 795
- 15.15 Concluding Remarks on Reactive Systems 801 Problems 802

16. System Design Involving Heat Reservoirs, Work Reservoirs, and Matter Reservoirs 811

Gas-Liquefaction Systems

- 16.1 Work Requirement for an Ideal Liquefaction System 811
- 16.2 Reversible Gas-Liquefaction System 814
- 16.3 Simple Linde-Hampson Gas-Liquefaction System 815

Gas-Separation Systems

- 16.4 Work Requirement for an Ideal Gas-Separation System 819
- 16.5 Reversible Gas-Separation System 823
- 16.6 Phase Diagram of a Two-Component Fluid 825
- 16.7 Simple Linde Single-Column Air-Separation System 826

Water-Desalination Systems

- 16.8 Minimum Energy Requirement for Desalination 829
- 16.9 Reverse-Osmosis Process 831
- 16.10 Multieffect Distillation System 835
- 16.11 Vapor-Compression Distillation 837

16.12 Chemical Exergy of Hydrocarbon Fuels 839

Problems 846

BIBLIOGRAPHY 855

APPENDIX 859

Table A.1.1 (SI)	Properties of Saturated Water and Saturated Steam (Temperature) 860
Table A.1.2 (SI)	Properties of Saturated Water and Saturated Steam (Pressure) 862
Table A.1.3 (SI)	Properties of Superheated Steam 864
Table A.1.4 (SI)	Properties of Compressed Water 866
Table A.1.1 (E)	Properties of Saturated Water and Saturated Steam (Temperature) 868
Table A.1.2 (E)	Properties of Saturated Water and Saturated Steam (Pressure) 870
Table A.1.3 (E)	Properties of Superheated Steam 872
Table A.1.4 (E)	Properties of Compressed Water 876
Table A.2.1 (SI)	Properties of Saturated Freon-12 878
Table A.2.2 (SI)	Properties of Superheated Freon-12 880
Table A.2.1 (E)	Properties of Saturated Freon-12 884
Table A.2.2 (E)	Properties of Superheated Freon-12 886
Table A.3.1 (SI)	Properties of Saturated Ammonia 890
Table A.3.2 (SI)	Properties of Superheated Ammonia 892
Table A.3.1 (E)	Properties of Saturated Ammonia 896
Table A.3.2 (E)	Properties of Superheated Ammonia 898
Table A.4.1 (SI)	Properties of Saturated Nitrogen 901
Table A.4.2 (SI)	Properties of Superheated Nitrogen 902
Table A.4.1 (E)	Properties of Saturated Nitrogen 907
Table A.4.2 (E)	Properties of Superheated Nitrogen 908
Table A.5.1 (SI)	Properties of Saturated Oxygen 911
Table A.5.2 (SI)	Properties of Superheated Oxygen 912

xxiv Contents

Properties of Saturated Oxygen 917
Properties of Superheated Oxygen 918
Properties of Air at Low Pressure 920
Properties of Air at Low Pressure 924
Properties of Ideal Gases 927
Properties of Ideal Gases 929
Molal Heat Capacities of Gases at Zero Pressure 931
Molal Heat Capacities of Gases at Zero Pressure 932
Enthalpy of Combustion of Substances at 25°C (77°F) and 1 atm 933
Enthalpy of Formation, Gibbs Function of Formation, and Absolute Entropy of Substances at $25^{\circ}C$ (77°F) and 1 Atm 934
Logarithms to the Base 10 of the Equilibrium Constant K_{ρ} 935
Temperature-Entropy Chart for Nitrogen 936
Temperature-Entropy Chart for Oxygen 937
Pressure-Enthalpy Diagram for Freon-12 938
Pressure-Enthalpy Diagram for Freon-12 939
Nelson-Obert Generalized Compressibility Chart (Medium-Pressure Region) 940
Nelson-Obert Generalized Compressibility Chart (High-Pressure Region) 941
Generalized Enthalpy Correction Chart 942
Generalized Entropy Correction Chart 943
Generalized Fugacity Coefficient Chart 944
Psychrometric Chart 945

Answers to selected problems 947

Index 951