Table of Contents

Part I

Introduction

Chapter 1

Histo	tory and Overview			
1.1	Why Structures Fail			
1.2				
	1.2.1 Early Fracture Research			
	1.2.2 The Liberty Ships	9		
	1.2.3 Post-War Fracture Mechanics Research			
	1.2.4 Fracture Mechanics from 1960 to 1980			
	1.2.5 Fracture Mechanics from 1980 to the Present			
1.3				
	1.3.1 The Energy Criterion			
	1.3.2 The Stress-Intensity Approach			
	1.3.3 Time-Dependent Crack Growth and Damage Toler			
1.4	-			
1.5	A Brief Review of Dimensional Analysis			
	1.5.1 The Buckingham П-Theorem			
	1.5.2 Dimensional Analysis in Fracture Mechanics			
Refe	erences			

Part II

Fundamental Concepts

Linea	ar Elast	ic Fracture Mechanics	25
2.1		omic View of Fracture	
2.2		Concentration Effect of Flaws	
2.3	The G	riffith Energy Balance	
		Comparison with the Critical Stress Criterion	
		Modified Griffith Equation	
2.4	The E	nergy Release Rate	
2.5	Instabi	ility and the R Curve	
	2.5.1	Reasons for the R Curve Shape	
	2.5.2	Load Control vs. Displacement Control	40
	2.5.3	Structures with Finite Compliance	41
2.6	Stress	Analysis of Cracks	42
	2.6.1	The Stress Intensity Factor	43
	2.6.2	Relationship between K and Global Behavior	45
	2.6.3	Effect of Finite Size	48
	2.6.4	Principle of Superposition	
	2.6.5	Weight Functions	56

2.7	Dalatio	nchin ha	tween K	and ${\cal G}$	58
	Creak '	Tin Place	ioity		61
2.8	2.8.1	The Inv	in Appros		61
	2.0.1	The Stri	n Viald N	10del	64
	2.8.2	The Sur	p- Heiu N	astic Zone Corrections	66
	2.8.3	Compar		De	66
	2.8.4	Plastic Z	Lone Snap		
2.9	K-Cont	rolled Fi	racture	ct vs. Fiction	
2.10	Plane S	Strain Fra	acture: Fa	ality	
		Crack-	Tip Triax	ess on Apparent Fracture Toughness	75
	2.10.2	Effect	of Thickn	ess on Apparent Fracture Toughness	78
	2.10.3	Plastic	Zone Eff	ects	79
	2.10.4	Implica	ations for	Cracks in Structures	80
2.11	Mixed	-Mode F	racture		
	2.11.1	Propag	ation of a	an Angled Crack	
	2.11.2	Equiva	lent Mod	e I Crack	
	2.11.3	Biaxia	l Loading		
2.12	Interac	tion of N	Multiple (Cracks	
	2.12.1	Conlar	har Crack	5	
	2.12.2	Paralle	l Cracks.		80
App	endix 2:	Mathe	ematical F	Foundations of Linear Elastic	00
••		Fractu	ire Mecha	nics	88
		A2.1	Plane El	asticity	88
			A211	Cartesian Coordinates	
			$\Delta 2 1 2$	Polar Coordinates	90
		A2.2	Crack C	rowth Instability Analysis	
		A2.3	Crack-T	in Stress Analysis	
			A2.3.1	Generalized In-Plane Loading	
			A232	The Westergaard Stress Function	95
		A2.4	Elliptica	al Integral of the Second Kind	100
Refe	erences.				101

Chaj		103
Elast	tic-Plastic Fracture Mechanics	
3.1	Crack-Tip-Opening Displacement	105
3.2	The I Contour Integral	
-	3.2.1 Nonlinear Energy Release Rate	
	3.2.2 Las a Path-Independent Line Integral	
	3.2.3 Las a Stress Intensity Parameter	
	3.2.4 The Large Strain Zone	
	3.2.5 Laboratory Measurement of J	
3.3	Relationships Between J and CTOD	
	Crack-Growth Resistance Curves	
3.4		
	3.4.1 Stable and Unstable Crack Growth	
	3.4.2 Computing <i>J</i> for a Growing Crack	128
3.5	J-Controlled Fracture	128
	3.5.1 Stationary Cracks	
	3.5.2 LControlled Crack Growth	
3.6	Crack-Tip Constraint Under Large-Scale Yielding	
	3.6.1 The Elastic T Stress	
	3.6.2 <i>J-Q</i> Theory	

	3.6.2.1	The J-Q Toughness Locus	142
		Effect of Failure Mechanism	
		on the <i>J-Q</i> Locus	144
3.6.3	Scaling	Model for Cleavage Fracture	
	3.6.3.1	Failure Criterion	
	3.6.3.2	Three-Dimensional Effects	147
	3.6.3.3	Application of the Model	148
3.6.4	Limitati	ons of Two-Parameter Fracture Mechanics	149
Appendix 3:	Mathe	matical Foundations	
	of Ela	stic-Plastic Fracture Mechanics	153
		Determining CTOD from the Strip-Yield Model	
	A3.2	The J Contour Integral	156
	A3.3	J as a Nonlinear Elastic Energy Release Rate	158
	A3.4	The HRR Singularity	159
	A3.5	Analysis of Stable Crack Growth	
		in Small-Scale Yielding	162
		A3.5.1 The Rice-Drugan-Sham Analysis	162
		A3.5.2 Steady State Crack Growth	166
	A3.6	Notes on the Applicability of Deformation Plasticity	
		to Crack Problems	168
References			171

Dyna	amic an	d Time-I	Dependent Fracture	173	
4.1	Dynamic Fracture and Crack Arrest				
	4.1.1	Rapid L	oading of a Stationary Crack	174	
	4.1.2	Rapid C	Crack Propagation and Arrest	178	
		4.1.2.1	Crack Speed	180	
		4.1.2.2	Elastodynamic Crack-Tip Parameters	182	
		4.1.2.3	Dynamic Toughness	184	
		4.1.2.4	Crack Arrest	186	
	4.1.3	Dynam	ic Contour Integrals		
4.2	Creep	Crack G	rowth	189	
	4.2.1		Integral		
	4.2.2	Short-T	ime vs. Long-Time Behavior	193	
		4.2.2.1	The C _t Parameter	195	
		4.2.2.2	Primary Creep		
4.3	Viscoe	elastic Fr	acture Mechanics	196	
	4.3.1		Viscoelasticity		
	4.3.2	The Vis	coelastic J Integral	200	
		4.3.2.1	Constitutive Equations	200	
		4.3.2.2	Correspondence Principle	200	
		4.3.2.3	0		
		4.3.2.4	Crack Initiation and Growth	202	
	4.3.3	Transitio	on from Linear to Nonlinear Behavior	204	
Appe	endix 4:	Dynan	nic Fracture Analysis		
		A4.1	Elastodynamic Crack Tip Fields		
		A4.2	Derivation of the Generalized Energy		
			Release Rate	209	
Refe	rences			213	

Part III

Material	ehavior	17

Chapter 5

Frac	ture Me	echanisms in Metals	
5.1	Ducti	le Fracture	
	5.1.1		
	5.1.2	Void Growth and Coalescence	
		Ductile Crack Growth	
5.2		age	
	5.2.1		
	5.2.2	Mechanisms of Cleavage Initiation	
		Mathematical Models of Cleavage Fracture	
		Toughness	
5.3	The E	Ductile-Brittle Transition	
5.4		ranular Fracture	
		: Statistical Modeling of Cleavage Fracture	
- PP	0110111 0	A5.1 Weakest Link Fracture	
		A5.2 Incorporating a Conditional Probability	
		of Propagation	252
Refe	erences	of Tropagation	

Fract	ure Me	chanisms	in Nonmetals	257
6.1 Engineering Plastics				
	6.1.1	Structur	e and Properties of Polymers	258
		6.1.1.1	Molecular Weight	258
		6.1.1.2	Molecular Structure	259
		6.1.1.3	Crystalline and Amorphous Polymers	259
		6.1.1.4	Viscoelastic Behavior	
		6.1.1.5	Mechanical Analogs	
	6.1.2	Yielding	g and Fracture in Polymers	
		6.1.2.1	Chain Scission and Disentanglement	
		6.1.2.2	Shear Yielding and Crazing	
		6.1.2.3	Crack-Tip Behavior	
		6.1.2.4	Rubber Toughening	
		6.1.2.5	Fatigue	270
	6.1.3	Fiber-Re	einforced Plastics	270
		6.1.3.1	Overview of Failure Mechanisms	271
		6.1.3.2	Delamination	272
		6.1.3.3	Compressive Failure	275
		6.1.3.4	Notch Strength	278
		6.1.3.5	Fatigue Damage	
6.2	Ceram	ics and C	Ceramic Composites	
	6.2.1	Microcr	ack Toughening	
	6.2.2	Transfor	rmation Toughening	
	6.2.3	Ductile	Phase Toughening	
	6.2.4	Fiber an	d Whisker Toughening	
6.3	Concr		ock	
Refe	rences.			

Part IV

Applications

Chapter 7

Frac	ture To	ughness Testing of Metals	
7.1	Gener	al Considerations	
	7.1.1	Specimen Configurations	
	7.1.2	Specimen Orientation	
	7.1.3	Fatigue Precracking	
	7.1.4	Instrumentation	
	7.1.5	Side Grooving	
7.2	K_{lc} Te	esting	
	7.2.1	ASTM E 399	
	7.2.2	Shortcomings of E 399 and Similar Standards	
7.3	K-R C	Curve Testing	
	7.3.1	Specimen Design	
	7.3.2	Experimental Measurement of K-R Curves	
7.4	J Test	ing of Metals	
	7.4.1	The Basic Test Procedure and J_{lc} Measurements	
	7.4.2	J-R Curve Testing	
	7.4.3	Critical J Values for Unstable Fracture	
7.5	CTOI	O Testing	
7.6	Dynaı	nic and Crack-Arrest Toughness	
	7.6.1	Rapid Loading in Fracture Testing	
	7.6.2	K _{la} Measurements	
7.7	Fractu	re Testing of Weldments	
	7.7.1	Specimen Design and Fabrication	
	7.7.2	Notch Location and Orientation	
	7.7.3	Fatigue Precracking	
	7.7.4	Posttest Analysis	
7.8	Testin	g and Analysis of Steels in the Ductile-Brittle Transition Region	
7.9	Qualitative Toughness Tests		
	7.9.1	Charpy and Izod Impact Test	
	7.9.2	Drop Weight Test	
	7.9.3	Drop Weight Tear and Dynamic Tear Tests	
Appe	endix 7	Stress Intensity, Compliance, and Limit Load Solutions	
••		for Laboratory Specimens	
Refe	rences.	, I	

Fract	ure Tes	ting of Nonmetals	353
8.1			
	8.1.1	The Suitability of K and J for Polymers	353
		8.1.1.1 K-Controlled Fracture	354
		8.1.1.2 J-Controlled Fracture	357
	8.1.2	Precracking and Other Practical Matters	
	8.1.3	<i>K_{lc}</i> Testing	
	8.1.4	J Testing	
	8.1.5	Experimental Estimates of Time-Dependent Fracture Parameters	
		Qualitative Fracture Tests on Plastics	
8.2	Interla	minar Toughness of Composites	

83	Ceram	ics
		Chevron-Notched Specimens
		Bend Specimens Precracked by Bridge Indentation
		Bend Specificity Freedocted by Bridge Indentation
NCICI	CHUES	

Application to Structures			
9.1 Linear Elastic Fracture Mechanics			
	9.1.1	K ₁ for Part-Through Cracks	
	9.1.2	Influence Coefficients for Polynomial Stress Distributions	
	9.1.3	Weight Functions for Arbitrary Loading	
	9.1.4	Primary, Secondary, and Residual Stresses	
	9.1.5	A Warning about LEFM	
9.2	The C	TOD Design Curve	
9.3	Elastic	c-Plastic J-Integral Analysis	
	9.3.1	The EPRI J-Estimation Procedure	
		9.3.1.1 Theoretical Background	
		9.3.1.2 Estimation Equations	
		9.3.1.3 Comparison with Experimental J Estimates	401
	9.3.2	The Reference Stress Approach	403
	9.3.3	Ductile Instability Analysis	405
	9.3.4	Some Practical Considerations	408
9.4	Failur	e Assessment Diagrams	410
	9.4.1	Original Concept	410
	9.4.2	J-Based FAD	412
	9.4.3	Approximations of the FAD Curve	415
	9.4.4	Estimating the Reference Stress	416
	9.4.5	Application to Welded Structures	423
		9.4.5.1 Incorporating Weld Residual Stresses	423
		9.4.5.2 Weld Misalignment	426
		9.4.5.3 Weld Strength Mismatch	427
	9.4.6	Primary vs. Secondary Stresses in the FAD Method	428
	9.4.7	Ductile-Tearing Analysis with the FAD	430
	9.4.8	Standardized FAD-Based Procedures	
9.5	Proba	bilistic Fracture Mechanics	
Арр	endix 9	: Stress Intensity and Fully Plastic J Solutions	
		for Selected Configurations	434
Refe	erences	-	449

F		
Fatigu	e Crack Propagation	
10.1	Similitude in Fatigue	451
10.2	Empirical Fatigue Crack Growth Equations	
10.3	Crack Closure	457
	10.3.1 A Closer Look at Crack-Wedging Mechanisms	
	10.3.2 Effects of Loading Variables on Closure	
10.4	The Fatigue Threshold	
	10.4.1 The Closure Model for the Threshold	
	10.4.2 A Two-Criterion Model	
	10.4.3 Threshold Behavior in Inert Environments	
10.5	Variable Amplitude Loading and Retardation	
	G C C C C C C C C C C C C C C C C C C C	

	10.5.1	Linear Damage Model for Variable Amplitude Fatigue	474
	10.5.2	Reverse Plasticity at the Crack Tip	
	10.5.3	The Effect of Overloads and Underloads	
	10.5.4	Models for Retardation and Variable Amplitude Fatigue	
10.6	Growth	of Short Cracks	
	10.6.1	Microstructurally Short Cracks	
	10.6.2	Mechanically Short Cracks	491
10.7		nechanisms of Fatigue	
	10.7.1	Fatigue in Region II	491
		Micromechanisms Near the Threshold	
	10.7.3	Fatigue at High ΔK Values	
10.8	Fatigue	Crack Growth Experiments	
	10.8.1	Crack Growth Rate and Threshold Measurement	496
	10.8.2	Closure Measurements	498
	10.8.3	A Proposed Experimental Definition of ΔK_{eff}	
10.9	Damage	e Tolerance Methodology	
Apper	ndix 10:	Application of The J Contour Integral to Cyclic Loading	504
		A10.1 Definition of ΔJ	504
		A10.2 Path Independence of ΔJ	
		A10.3 Small-Scale Yielding Limit	
Refere	ences	~	

Enviro	onmental	lly Assisted Cracking in Metals	511
11.1		on Principles	
	11.1.1	Electrochemical Reactions	511
	11.1.2	Corrosion Current and Polarization	514
	11.1.3	Electrode Potential and Passivity	514
	11.1.4	Cathodic Protection	515
	11.1.5	Types of Corrosion	516
11.2	Enviror	mental Cracking Overview	516
	11.2.1	Terminology and Classification of Cracking Mechanisms	516
	11.2.2	Occluded Chemistry of Cracks, Pits, and Crevices	517
	11.2.3	Crack Growth Rate vs. Applied Stress Intensity	518
	11.2.4	The Threshold for EAC	520
	11.2.5	Small Crack Effects	521
	11.2.6	Static, Cyclic, and Fluctuating Loads	523
	11.2.7	Cracking Morphology	523
	11.2.8	Life Prediction	523
11.3	Stress (Corrosion Cracking	525
	11.3.1	The Film Rupture Model	527
	11.3.2	Crack Growth Rate in Stage II	528
	11.3.3	Metallurgical Variables that Influence SCC	528
	11.3.4	Corrosion Product Wedging	529
11.4	Hydrog	en Embrittlement	529
	11.4.1	Cracking Mechanisms	530
	11.4.2	Variables that Affect Cracking Behavior	531
		11.4.2.1 Loading Rate and Load History	531
		11.4.2.2 Strength	533
		11.4.2.3 Amount of Available Hydrogen	535
		11.4.2.4 Temperature	535

11.5	Corrosion Fatigue		538
		Time-Dependent and Cycle-Dependent Behavior	
		Typical Data	
	11.5.3	Mechanisms	
		11.5.3.1 Film Rupture Models	544
		11.5.3.2 Hydrogen Environment Embrittlement	
		11.5.3.3 Surface Films	
	11.5.4	The Effect of Corrosion Product Wedging on Fatigue	544
11.6	Experimental Methods		
	•	Tests on Smooth Specimens	
	11.6.2	Fracture Mechanics Test Methods	547
Refer	ences		

Comp	utationa	Fracture Mechanics	
12.1	Overvie	ew of Numerical Methods	
	12.1.1	The Finite Element Method	554
	12.1.2	The Boundary Integral Equation Method	556
12.2	Traditio	onal Methods in Computational Fracture Mechanics	558
	12.2.1	-	
	12.2.2	Elemental Crack Advance	559
	12.2.3	Contour Integration	560
	12.2.4	Virtual Crack Extension: Stiffness Derivative Formulation	560
	12.2.5	Virtual Crack Extension: Continuum Approach	561
12.3	The Energy Domain Integral		563
	12.3.1	Theoretical Background	563
	12.3.2	Generalization to Three Dimensions	566
	12.3.3	Finite Element Implementation	568
12.4	Mesh I	Design	570
12.5	Linear	Elastic Convergence Study	577
12.6	Analys	s of Growing Cracks	585
Apper	Appendix 12: Properties of Singularity Elements		
		A12.1 Quadrilateral Element	
		A12.2 Triangular Element	589
Refere	ences	~	590

Practic	e Problems	
13.1	Chapter 1	
	Chapter 2	
	Chapter 3	
	Chapter 4	
13.5	Chapter 5	
13.6	Chapter 6	
13.7	Chapter 7	
	Chapter 8	
	Chapter 9	
	Chapter 10	
	Chapter 11	
	Chapter 12	
Index		611