Contents

1	Intro	duction	1
	1.1	A pleasant experiment	1
	1.2	Scope of this book	3
	1.3	The elements of foam structure	6
	1.4	Metastability	8
	1.5	Essential properties of a foam	10
		1.5.1 Both a solid and a liquid	10
		1.5.2 Drainage	10
		1.5.3 Coarsening	11
		1.5.4 Collapse	12
	1.6	Length and time scales	12
		Early history	14
	1.8	Foam as a prototypical system	17
I	Bibliog		18
•	T	Legalibrium miles	21
2		al equilibrium rules The law of Laplace	21
		Laplace's law in two dimensions	23
		The laws of Plateau	24
		Laplace's law at a Plateau border junction	26
	2.4	Bubble-bubble interaction	26
1		graphy	27
	•		
3	Qua	ntitative description of foam structures	28
	3.1	Some necessary definitions	28
	3.2	Statistics	29
	3.3	Some further theorems and correlations	31
		3.3.1 Aboav–Weaire law	31
		3.3.2 Curvature sum rule in two dimensions	32
		3.3.3 Curvature sum rule in three dimensions	33
		3.3.4 Euler's equation	33
		3.3.5 An application of Euler's equation for	34
		two-dimensional wet foams	34
	3.4	Topological changes	3'
	3.5	Systematic expansions in the dry foam limit	3°
	3.6.		3'
	3.7	The osmotic pressure	3

x Contents

	3.8	Vertex stability	41
	3.9	Other instabilities	42
	3.10	Wet vertices	43
	3.11	The surface liquid fraction	46
4	Mak	ing foams	47
	4.1	Foam composition	47
	4.2	Different methods of foam production	47
	4.3	Blowing bubbles with a nozzle – some practical advice	50
	4.4	Foam tests	51
	4.5	Foams in microgravity	52
	4.6	Two-dimensional foams	53
	Bibliog	graphy	55
5	Imag	ging and probing foam structure	56
	5.1	Matzke's experiment	56
	5.2	Visual imaging and optical tomography	57
	5.3	The principle of Archimedes	61
	5.4	Segmented measurements of capacitance and resistance	64
		5.4.1 AC capacitance measurement	65
		5.4.2 Conductance measurement	66
	5.5	MRI	68
	5.6	Optical glass fibre probe method	69
	5.7	Optical measurement of film thinning	71
	5.8	Light scattering	72
	5.9	Fluorescence	74
	Biblio	graphy	74
6	Sim	ulation and modelling	75
	6.1	Simulating two-dimensional dry foam	75
	6.2	Two-dimensional wet foam	77
	6.3	Three-dimensional foam	78
	6.4	Other representations of foams	81
		6.4.1 Vertex models	81
		6.4.2 <i>Q</i> -Potts models	83
	6.5	Models based on bubble-bubble interaction	86
	Biblio	graphy	87
7	Coa	rsening	88
	7.1	Expected scaling behaviour	88
	7.2	Von Neumann's law	91
	7.3	Observed scaling behaviour	92
	7.4	Transients	95
	7.5	Coarsening in wet foams	97
	7.6	Three-dimensional cell statistics	98
	7.7	Coarsening theory	98

	7.8	Coarsening in mixed gas foams	100
E	Bibliogi		101
8	Dhoo	OWN	102
0	Rheol	Foam as soft matter	102
	8.2	Different types of shear	105
	8.3	The dry foam limit	105
	8.4	The plastic regime	107
	8.5	Wet foam	108
	8.6	The wet limit	108
	8.7	Avalanches	109
	8.8	Rheological measurement	112
	8.9	Elastic moduli from cyclic strain experiments	112
	8.10	Creep	113
	8.11	Strain-rate dependent effects	114
	0.11	8.11.1 Behaviour at very slow rates of shear	115
		8.11.2 The quasi-static regime	116
]	Bibliog		116
9	·	rical conduction in a foam	117
y	9.1	Model for electrical conduction	117
		The role of the films	120
	9.2	The uses of conductivity	120
40			121
10	-	librium under gravity The continued density profile	121
	10.1	The vertical density profile	123
	10.2	Bubble size sorting under gravity	
11	Drai	nage	126
	11.1	Uniform drainage	126
		11.1.1 Poiseuille flow?	126
		11.1.2 Gravity driven flow in a Plateau border	127
		11.1.3 The analogy between foam drainage and electrical	100
		conductance	128
		11.1.4 Useful formulae for foam drainage	129
	11.2	The solitary wave in forced drainage	131
	11.3	The foam drainage equation	132
	11.4	Free drainage	135
	11.5	Quantitative predictions	136 137
	11.6	The limitations of the drainage equation	138
	11.7	Junction-limited drainage	138
	11.8	Instability of steady drainage	139
	11.9	Experimental determination of drainage profiles	143
	Biblio	graphy	
12	Foar	n collapse	144
		Surface tension and film stability	144

xii Contents

12.2	Forces in thin films	145
12.3	Film thinning	147
12.4	Film stability and rupture	149
12.5	Antifoams	149
Bibliog		150
13 Ordo	ered foams	151
13.1	Order versus disorder	151
13.2	Two-dimensional ordered foam	151
13.3	The surface of three-dimensional monodisperse foams	152
13.4	Ordered three-dimensional foam: the Kelvin problem	153
13.5	The new ideal structure for monodisperse dry foam	158
13.6	Experimental observation	160
13.7	Related ordered structures	160
13.8	Wet monodisperse foam	162
13.9	Surface cells and slab structures	163
13.10	The honey bee's dilemma	166
13.11	Cylindrical foam	169
13.12	Fractal foam	173
Biblio	graphy	173
14 Som	e applications of liquid foams	175
14.1	Beer and champagne	175
	Food foams	176
14.3	Foam fractionation	176
14.4	Flotation	176
14.5	Fire-fighting foams	177
14.6	Foams in enhanced oil recovery	178
Biblio	graphy	178
15 Som	ne analogous physical systems	179
15.1	Foams large and small	179
15.2	Grain growth	179
15.3	Emulsions	181
15.4	<u> </u>	185
15.5	Langmuir monolayers	188
15.6	Antibubbles	189
Biblic	graphy	190
16 Soli	d foams	192
16.1	Light and versatile materials	192
16.2	Solid foam formation	194
16.3	Mechanical properties	195
16.4	A two-dimensional model for simulation	196
16.5	Thermal conductivity	201
16.6	Non-uniform solid foams	202

	Сот	ntents	xiii
I	16.7 Metal foams Bibliography		202 207
17	Some natural foams 17.1 A storm at sea 17.2 Biological cells 17.3 Cork 17.4 Cuckoo spit 17.5 Cancellous bone Bibliography		208 208 209 209 209 210 212
18	Envoi		213
Appe	endix		215
A	The shape of single soap films and bubbles A.1 Surface tension A.2 The law of Laplace and Young A.3 Curved surfaces A.4 Soap films in wire frames A.5 Minimal surfaces		215 215 215 216 216 216
В	The theorem of Lamarle		218
C	Bubble clusters		221
D	The decoration theorem		223
E	The conductivity formula of Lemlich		226
F			228 229
G	Phyllotaxis Bibliography		230 231
Н	H.1 Two-dimensional dry foam H.2 Two-dimensional wet foam H.2.1 Representation of the foam network H.2.2 Equilibrium of the system H.2.3 Generating and modifying the simulated foam H.2.4 Detecting foam break-up in the wet limit H.3 Simulating three-dimensional foam: the Surface Evolver Bibliography		232 232 235 235 236 237 238 238 239
	I Simulation of two-dimensional solid foams		243
Ind	ex		473