Contents

Pr	eface		vii
1.	Latti	ice Structures and Discretizations	1
	1.1	Discrete derivatives	1
	1.2	The Jackson derivative	3
	1.3	The q -integral	6
	1.4	Generalized q-hypergeometric functions	7
	1.5	The discrete space-time: a short retrospect	9
	1.6	Quick inspection of q-deformed Schrödinger	
		equations	13
	1.7	Orthogonal polynomials of hypergeometric type on	
		the discrete space	14
2.	Perie	odic Quasiperiodic and Confinement Potentials	17
	2.1	Short derivation of the Bloch-theorem	17
	2.2	The derivation of energy-band structures	19
	2.3	Direct and reciprocal lattices	22
	2.4	Quasiperiodic potentials	25
	2.5	A shorthand presentation of the elliptic Lamè-	
			27
	2.6	Quantum dot potentials	28
	2.7	Quantum ring potentials	31
	2.8	Persistent currents and magnetizations	32
	2.9	The derivation of the total persistent current for	
		electrons on the 1D ring at $T=0$	35
	2.10	Circular currents	37

3.	Tin	ne Discretization Schemes	41
	3.1	Discretized time evolutions of coordinate and	
		momentum observables	42
	3.2	Time independent Hamiltonians of hyperbolic type	43
	3.3	Time independent Hamiltonians of elliptic type	45
	3.4	The derivation of matrix elements	46
	3.5	Finite difference Liouville-von Neumann equations	
		and "elementary" time scales	48
	3.6	The q -exponential function approach to the q -	
		deformation of time evolution	50
	3.7	Alternative realizations of discrete time evolutions	
		and stationary solutions	55
4.	Disc	crete Schrödinger Equations. Typical Examples	57
	4.1	The isotropic harmonic oscillator on the lattice	58
	4.2	Hopping particle in a linear potential	61
	4.3	The Coulomb potential on the Bethe-lattice	65
	4.4	The discrete s-wave description of the Coulomb-	
		problem	66
	4.5	The Maryland class of potentials	69
	4.6	The relativistic quasipotential approach to the	
		Coulomb-problem	73
	4.7	The infinite square well	75
	4.8	Other discrete systems	76
5.	Disc	rete Analogs and Lie-Algebraic Discretizations.	
	Re	ealizations of Heisenberg-Weyl Algebras	79
	5.1	Lie algebraic approach to the discretization of	
		differential equations	80
	5.2	Describing exactly and quasi-exactly solvable	
		systems	82
	5.3	The discrete analog of the harmonic oscillator	84
	5.4	Applying the factorization method	87
	5.5	The discrete analog of the radial Coulomb-problem	89
	5.6	The discrete analog of the isotropic harmonic	
			93
	5.7	Realizations of Heisenberg-Weyl commutation	
		$\mathbf{relations} \dots \dots \dots \dots \dots \dots \dots \dots \dots $	95

6.	Hopp	oing Hamiltonians. Electrons in Electric Field	99
	6.1	Periodic and fixed boundary conditions	101
	6.2	Density of states and Lyapunov exponents	103
	6.3	The localization length: an illustrative example	105
	6.4	Delocalization effects	107
	6.5	The influence of a time dependent electric field	108
	6.6	Discretized time and dynamic localization	111
	6.7	Extrapolations towards more general modulations	114
	6.8	The derivation of the exact wavefunction revisited	116
	6.9	Time discretization approach to the minimum of	
		the MSD \ldots \ldots \ldots \ldots \ldots \ldots \ldots	118
	6.10	Other methods to the derivation of the DLC	120
	6.11	Rectangular wave fields and other generalizations	122
	6.12	Wannier-Stark ladders	125
	6.13	Quasi-energy approach to DLC's	126
	6.14	The quasi-energy description of dc-ac fields	129
	6.15	Establishing currents in terms of the Boltzmann	
		equation	131
7.	Tigh Ma	t Binding Descriptions in the Presence of the agnetic Field	133
	7.1	The influence of the nearest and next nearest	
		neighbors	134
	7.2	Transition to the wavevector representation	136
	7.3	The secular equation	138
	7.4	The $Q = 2$ integral quantum Hall effect	140
	7.5	Duality properties	142
	7.6	Tight binding descriptions with inter-band	
		couplings	143
	7.7	Concrete single-band equations and classical	
		realizations	147
8.	The	Harper-Equation and Electrons on the $1D$ Ring	151
	8.1	The usual derivation of the Harper-equation	152
	8.2	The transfer matrix	153
	8.3	The derivation of Δ -dependent energy polynomials	155
	8.4	Deriving Δ -dependent DOS-evaluations	157
	8.5	Numerical DOS-studies	160

xi

	8.6	Thermodynamic and transport properties	161
	8.7	The 1D ring threaded by a time dependent	
		magnetic flux	167
	8.8	The tight binding description of electrons on the	
		1D ring	170
	8.9	The persistent current for the electrons on the 1D	
		discretized ring at $T = 0$	172
9.	The	q-Symmetrized Harper Equation	175
	9.1	The derivation of the generalized q SHE \dots	175
	9.2	The three term recurrence relation	178
	9.3	Symmetry properties	181
	9.4	The $SL_q(2)$ -symmetry of the q SHE	184
	9.5	Magnetic translations	188
	9.6	The $SU_q(2)$ -symmetry of the usual Harper	
		Hamiltonian	190
	9.7	Commutation relations concerning magnetic	
		translation operators and the Hamiltonian	192
10.	Qua	antum Oscillations and Interference Effects in	
	Na	nodevices	195
	10.1	The derivation of generalized formulas to the total	100
	10.1	persistent current in terms of Fourier cories	100
	10.2	The discretized Abaronov-Bohm ring with	190
		attached leads	100
	10.3	Quantum wire attached to a chain of quantum	199
		dots	207
	10.4	Quantum oscillations in multichain nanorings	207
	10.5	Quantum LC-circuits with a time-dependent	210
		external source	215
	10.6	Dynamic localization effects in L-ring circuits	210 910
	10.7	Double quantum dot systems attached to leads	213
			240
11.	Con	clusions	225
	11.1	Further perspectives	228
Apj	pendix	A Dealing with polynomials of a discrete variable	231

xii

	Contents	xiii
Appendix B	The functional Bethe-ansatz solution	237
Bibliography		241
Index		259