
Contents

Preface

Chapter 1
1.1
1.2
1.3
1.4
1.5

1.6

1.7
1.8
1.9

1.10
1.11
1.12
1.13
1.14
1.15
1.16
1.17
1.18
1.19
1.20

lntroduction to Computers and C++ Programming 1
Introduction 2
What Is a Computer? 5
Computer Organization 5
Evolution of Operating Systems 6
Personal Computing, Distributed Computing, and
ClientlServer Computing 7
Machine Languages, Assembly Languages, and High-Ievel
Languages 7
The History of C++ 9
C++ Class Libraries and the C Standard Library 10
Concurrent C++ 11
Other High-level Languages 11
Structured Programming 11
Basics of a Typical C++ Environment 12
General Notes About C++ and this Book 15
Introduction to C++ Programming 16
A Simple Program: Printing a Line ofText 16
Another Simple Program: Adding Two Integers 20
Memory Concepts 24
Arithmetic 25
Decision Making: Equality and Relational Operators 28
Thinking About Objects 32
Summary • Terminology • Common Programming Errors •
Good Programming Practices • Performance Tips • Portabil-
ity Tips • Software Engineering Observations • Self-Review
Exercises • Answers to Self-Review Exercises • Exercises

vii

viii C++ How To PROGRAM CONTENTS CONTENTS

Chapter 2 Control Structures 51
2.1 Introduction 52
2.2 Algorithms 53
2.3 Pseudocode 53
2.4 Control Structures 54
2.5 The 1f Selection Structure 56
2.6 The If /Else Selection Structure 58
2.7 The While Repetition Structure 62
2.8 Formulating AIgorithms: Case Study 1 (Counter-Controlled

Repetition) 63
2.9 Formulating AIgorithms with Top-down, Stepwise Refine-

ment: Case Study 2 (Sentinel-Controlled Repetition) 65
2.10 Formulating AIgorithms with Top-down, Stepwise Refine-

ment: Case Study 3 (Nested Control Structures) 72
2.11 Assignment Operators 75
2.12 Increment and Decrement Operators 77
2.13 Essentials of Counter-Controlled Repetition 80
2.14 The For Repetition Structure 82
2.15 Examples Using the For Structure 85
2.16 The Switch Multiple-Selection Structure 89
2.17 The Do/While Repetition Structure 96
2.18 The Break and Continue Statements 97
2.19 Logical Operators 99
2.20 Confusing Equality (==) and Assignment (=) Operators 103
2.21 Structured Programming Summary 104
2.22 Thinking About Objects: Identifying the Objects in a

Problem 110
Summary • Terminology • Common Programming Errors •
Good Programming Practices • Performance Tips • Portabil-
ity Tips • Software Engineering Observations • Self-Review
Exercises • Answers to Self-Review Exercises • Exercises

Chapter 3 Functions 135
3.1 Introduction 136
3.2 Program Modules in C++ 137
3.3 Math Library Functions 138
3.4 Functions 139
3.5 Function Definitions 140
3.6 Function Prototypes 143
3.7 Header Files 147
3.8 Random Number Generation 148
3.9 Example: A Game of Chance 153

3.10 Storage Classes 156
3.11 Scope Rules 159

CONTENTS CONTENTS C++ How To PROGRAM ix

3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20
3.21
3.22

Recursion 162
Example Using Recursion: The Fibonacci Series 165
Recursion vs. Iteration 169
Functions with Empty Parameter Lists 171
Inline Functions 172
References and Reference Parameters 172
Default Arguments 177
Unary Scope Resolution Operator 178
Function Overloading 179
Function Templates 181
Thinking About Objects: Identifying an Object's
Attributes 182
Summary • Terminology • Common Programming Errors •
Good Programming Practices • Peiformance Tips • Portabil-
ity Tips • Software Engineering Observations • Self-Review
Exercises • Answers to Self-Review Exercises • Exercises

Arrays 211
Introduction 212
Arrays 212
Declaring Arrays 214
Examples Using Arrays 215
Passing Arrays to Functions 228
Sorting Arrays 231
Case Study: Computing Mean, Median, and Mode Using
Arrays 233
Searching Arrays: Linear Search and Binary Search 236
Multiple-Subscripted Arrays 239
Thinking About Objects: Identifying an Object's
Behaviors 248
Summary. Terminology • Common Programming Errors •
Good Programming Practices • Peiformance Tips • Portabil-
ity Tips • Software Engineering Observations • Self-Review
Exercises • Answers to Self-Review Exercises • Exercises • Re-
cursion Exercises

110

135
136
137
138
139
140
143
147
148
153
156
159

Chapter 4
4.1
4.2
4.3
4.4
4.5
4.6
4.7

4.8
4.9

4.10

Chapter 5
5.1
5.2
5.3
5.4
5.5
5.6
5.7

Pointers and Strings
Introduction
Pointer Variable Declarations and Initialization
Pointer Operators
Calling Functions by Reference
Using the Const Qualifier with Pointers
Bubble Sort Using Call-by-Reference
Pointer Expressions and Pointer Arithmetic

267
268
269
270
272
277
282
287

x C++ How To PROGRAM CONTENTS CONTENTS

5.8 The Re1ationship Between Pointers and Arrays 290
5.9 Arrays of Pointers 294

5.10 Case Study: A Card Shuffling and Dea1ing Simu1ation 295
5.11 Function Pointers 300
5.12 Introduction to Character and String Processing 304

5.12.1 Fundamenta1s of Characters and Strings 304
5.12.2 String Manipu1ation Functions of the String

Handling Library 304
5.13 Thinking About Objects: Interactions Among Objects 313

Summary • Terminology • Common Programming Errors •
Good Programming Practices • Peiformance Tips • Portabil-
ity Tips • Software Engineering Observations • Self-Review
Exercises • Answers to Self-Review Exercises • Exercises •
Special Section: Building Your Own Computer· More Pointer
Exercises • String Manipulation Exercises • Special Section:
Advanced String Manipulation Exercises • A Challenging
String Manipulation Project

Chapter 6 Classes and Data Abstraction 345
6.1 Introduction 346
6.2 Structured Definitions 347
6.3 Accessing Members of Structures 348
6.4 Implementating a User-Defined Type Time With a Struct 349
6.5 Imp1ementating a Time Abstract Data Type With

a C1ass 351
6.6 C1ass Scope and Accessing C1ass Members 357
6.7 Separating Interface fram Imp1ementation 357
6.8 Controlling Access to Members 362
6.9 Access Functions and Uti1ity Functions 364

6.10 Initializing C1ass Objects: Constructors 366
6.11 Using Defau1t Arguments with Constructors 368
6.12 Using Destructors 371
6.13 When Destructors and Constructors are Called 372
6.14 Using Data Members and Member Functions 373
6.15 A Subtle Trap: Returning a Reference to Private Data

Member 379
6.16 Assignment by Defau1t Memberwise Copy 381
6.17 Software Reusabi1ity 383
6.18 Thinking About Objects: Programming the C1asses for

the E1evator Simu1ator 383
Summary· Terminology· Common Programming Errors·
Good Programming Practices • Peiformance Tips • Software
Engineering Observations • Self-Review Exercises • Answers
to Self-Review Exercises • Exercises

CONTE:'IlTS CONTENTS C++ How To PROGRAM xi

Chapter 7
7.1
7.2
7.3
7.4
7.5
7.6

7.7
7.8

7.9
7.10

Chapter 8
8.1
8.2
8.3
8.4

8.5

8.6
8.7
8.8
8.9

8.10
8.11
8.12

Classes: Part 11 395
Introduction 396
Constant Objects and Const Member Functions 396
Composition: C1asses as Members of Other Classes 403
Friend Functions and Friend C1asses 405
Using the This Pointer 409
Dynamic Memory Allocation with Operators New and
Delete 414
Static C1ass Members 415
Data Abstraction and Information Hiding 420
7.8.1 Examp1e: Array Abstract Data Type 421
7.8.2 Examp1e: String Abstract Data Type 422
7.8.3 Examp1e: Queue Abstract Data Type 423
Container C1asses and Iterators 423
Thinking About Objects: Using Composition and
Dynamic Object Management in the E1evator Simu1ator 424
Summary • Terminology • Common Programming Errors •
Good Programming Practices • Performance Tips • Software
Engineering Observations • Self-Review Exercises • Answers
to Self-Review Exercises • Exercises

Operator Overloading 431
Introduction 432
Fundamenta1s of Operator Overloading 433
Restrictions on Operator Overloading 434
Operator Functions as C1ass Members vs. as Friend
Functions 436
Overloading Stream-Insertion and Stream-Extraction
Operators 436
Overloading Unary Operators 440
Overloading Binary Operators 441
Case Study: An Array C1ass 441
Converting Between Types 452
Case Study: A String C1ass 452
Overloading ++ and -- 464
Case Study: A Date C1ass 465
Summary • Terminology • Common Programming Errors •
Good Programming Practices· Performance Tips· Software
Engineering Observations • Self-Review Exercises • Answers
to Self-Review Exercises • Exercises

Chapter 9
9.1
9.2
9.3

Inheritance
Introduction
Base C1asses and Derived C1asses
Protected Members

483
484
486
486

xii C++ How To PROGRAM CONTENTS

9.4
9.5
9.6

9.7
9.8
9.9

9.10

9.11
9.12
9.13
9.14
9.15

Chapter 10
10.1
10.2
10.3
10.4
10.5
10.6
10.7
10.8
10.9

Casting Base-C1ass Pointers to Derived-C1ass Pointers 486
Using Member Functions 486
Redefining Base-C1ass Members in a Derived
C1ass 486
Public, Protected, and Private Base C1asses 486
Direct Base C1asses and Indirect Base C1asses 498
Using Constructors and Destructors in Derived C1asses 499
Implicit Derived-C1ass Object to Base-C1ass Object
Conversion 501
Software Engineering with Inheritance 503
Composition vs. Inheritance 505
"Uses A" and "Knows A" Re1ationships 505
Case Study: Point, Circle, Cy1inder 505
Mu1tip1e Inheritance 511
Summary • Terminology • Common Programming Errors •
Good Programming Practices • Performance Tipo Software
Engineering Observations • Self-Review Exercises • Answers
to Self-Review Exercises • Exercises

Virtual Functions and Polymorphism 525
Introduction 526
Type Fie1ds and Switch Statements 526
Virtual Functions 527
Abstract Base C1asses and Concrete C1asses 527
Po1ymorphism 529
Case Study: A Payroll System Using Po1ymorphism 529
New C1asses and Dynamic Binding 540
Virtual Destructors 540
Case Study: Inheriting Interface and Imp1ementation 542
Summary • Terminology • Common Programming Errors •
Good Programming Practices • Performance Tips • Software
Engineering Observations • Self-Review Exercises • Answers
to Self-Review Exercises • Exercises

Chapter 11
11.1
11.2

11.3

Stream Input/Output
Introduction
Streams
11.2.1 lostream Library Header Fi1es
11.2.2 Stream Input/Output C1asses and Objects
Stream Output
11.3.1 Stream-Insertion Operator
11.3.2 Concatenating Stream InsertionlExtraction

Operators
11.3.3 Output of Char* Variables

555
557
557
558
558
560
560

562
563

CONTENTS CONTENTS C++ How To PROGRAM xiii

lters 486 11.3.4 Character Output with the Put Member
486 Function; Concatenating Puts 563

11.4 Stream Input 564
486 11.4.1 Stream- Extraction Operator 564
486 11.4.2 Get and Getline Member Functions 567
498 11.4.3 Other Istream Member Functions (peek,

lsses 499 putback, ignore) 569
:t 11.4.4 Type-Safe l/O 570

501 11.5 Unformatted l/O with Read, Gcount and Write 570
503 11.6 Stream Manipulators 570
505 11.6.1 Integral Stream Base: Dec, Oct, Hex and

505 Setbase Stream Manipulators 570
505 11.6.2 Floating-Point Precision (precision,

511 setprecision) 571
Errors • 11.6.3 Field Width (setw, width) 572
Software 11.6.4 User-Defined Manipulators 574
• Answers 11.7 Stream Format States 574

11.7.1 Format State Flags (setf, unsetf, flags) 576
11.7.2 Trailing Zeros and Decimal Points

525 (ios::showpoint) 576
526 11.7.3 Justification (ios::left, ios::right, ios::internal) 577
526 11.7.4 Padding (fill, setfill) 579
527 11.7.5 Integral Stream Base (ios::dec, ios::oct,

527 ios::hex, ios::showbase) 579
529 11.7.6 Floating-Point Numbers; Scientific Notation

[} 529 (ios: :scientific, ios: :fixed) 581
540 11.7.7 Uppercase/Lowercase Control
540 (ios::uppercase) 582

m 542 11.7.8 Setting and Resetting the Format Flags
r<;rrors• (setiosflags, resetiosflags) 582
• Software 11.8 Stream Error States 583
, Answers 11.9 l/O of User-Defined Types 585

11.10 Tying an Output Stream to an Input Stream 587
Summary. Terminology • Common Programming Errors •

555 Good Programming Practices· Peiformance Tips· Software

557 Engineering Observations • Self-Review Exercises • Answers

557 to Self-Review Exercises • Exercises

558
558 Chapter 12 Templates 603
560 12.1 Introduction 604
560 12.2 Function Templates 605

12.3 Overloading Template Functions 607
562 12.4 Class Templates 608
563 12.5 Class Templates and Non- Type Parameters 612

xiv C++ How To PROGRAM CONTENTS CONTENTS

12.6 Templates and lnheritance 613
12.7 Templates and Friends 613
12.8 Templates and Static Members 615

Summary • Terminology • Common Programming Errors •
Performance Tips • Software Engineering Observations •
Self-Review Exercises • Answers to Self-Review Exercises •
Exercises

Chapter 13
13.1
13.2
13.3
13.4
13.5

13.6
13.7
13.8
13.9

13.10
13.11
13.12
13.13

13.14

Chapter 14
14.1
14.2
14.3
14.4
14.5
14.6
14.7
14.8
14.9

14.10
14.11
14.12
14.13

Exception Handling 621
lntroduction 622
When Exception Handling Should Be Used 625
Other Error-Handling Techniques 625
The Basics of C++ Exception Handling 626
A Simple Exception Handling Example: Divide
by Zero 627
TryBlocks 629
Throwing an Exception 630
Catching an Exception 631
Rethrowing an Exception 634
Throwing a Conditional Expression 635
Exception Specifications 635
Processing Unexpected Exceptions 636
Constructors, Destructors, and Exception
Handling 637
Exceptions and lnheritance 637
Summary • Terminology • Common Programming Errors •
Good Programming Practices • Performance Tips • Portabil-
ity Tips • Software Engineering Observations • Self-Review
Exercises • Answers to Self-Review Exercises • Exercises

File Processing and String Stream l/O 649
lntroduction 650
The Data Hierarchy 650
Files and Streams 652
Creating a Sequential Access File 653
Reading Data from a Sequential Access File 658
Updating Sequential Access Files 662
Random Access Files 663
Creating a Randomly Accessed File 664
Writing Data Randomly to a Random Access File 666
Reading Data Sequentially from a Random Access File 666
Example: A Transaction Processing Program 668
String Stream Processing 675
InputlOutput of Objects 679

C++ How Tu PROGRAM xv

Summary. Terminology • Common Programming Errors •
Good Programming Practices • Performance Tips • Portabil-
ity Tip • Self-Review Exercises • Answers to Self-Review Exer-
cises • Exercises

Data Structures 691
Introduction 692
Self-Referential Classes 693
Dynamic Memory Allocation 694
Linked Lists 695
Stacks 708
Queues 713
Trees 716
Summary. Terminology • Common Programming Errors •
Good Programming Practices • Performance Tips • Portabil-
ity Tip • Self-Review Exercises • Answers to Self-Review
Exercises • Exercises • Special Section: Building Your Own
Compiler

801
802
802

The Preprocessor
Introduction
The #include Preprocessor Directive

Bits, Characters, Strings and Structures 749
lntroduction 750
Structure Definitions 750
lnitializing Structures 753
Using Structures with Functions 753
Typedef 753
Example: High-Performance Card Shuffling and
Dealing Simulation 754
Bitwise Operators 756
Bit Fields 764
Character Handling Library 767
String Conversion Functions 772
Search Functions of the String Handling Library 777
Memory Functions of the String Handling Library 781
Other Functions of the String Handling Library 786
Summary • Terminology • Common Programming Errors •
Good Programming Practices • Portability Tips • Self-Review
Exercises • Answers to Self-Review Exercises • Exercises •
Special Section: A Compendium of More Advanced String
Manipulation Exercises

16.7
16.8
16.9

16.10
16.11
16.12
16.13

Chapter 17
17.1
17.2

Chapter 16
16.1
16.2
16.3
16.4
16.5
16.6

Chapter 15
15.1
15.2
15.3
15.4
15.5
15.6
15.7

CONTENTS CONTENTS

613
613
615

~rrors •
IOns •
'rcises •

621
622
625
625
626

627
629
630
631
634
635
635
636

637
637

rrors •
Portabil-
Review
::lses

649
650
650
652
653
658
662
663
664
666

ile 666
668
675
679

xvi C++ How To PROGRAM CONTENTS

17.3

17.4
17.5
17.6
17.7
17.8
17.9

17.10

Chapter 18
18.1
18.2
18.3
18.4
18.5
18.6
18.7
18.8
18.9

18.10

18.11
18.12
18.13
18.14

The #define Preproeessor Direetive: Symbolie
Constants 803
The #define Preproeessor Direetive: Maeros 803
Conditional Compilation 805
The #error and #pragma Preproeessor Direetives 806
The # and ## Operators 807
Line Numbers 807
Predefined Symbolie Constants 808
Assertions 808
Summary· Terminology· Common Programming Errors·
Good Programming Practice • Performance Tip • Self-Review
Exercises • Answers to Self-Review Exercises • Exercises

Other Topics 815
Introduetion 816
Redireeting Input/Output on UNIX and DOS Systems 816
Variable- Length Argument Lists 817
Using Command-Line Arguments 818
Notes on Compiling Multiple-Souree-File Programs 820
Program Termination with Exit and Atexit 822
The Volatile Type Qualifier 824
Suffixes for Integer and Floating-Point Constants 824
Signal Handling 825
Dynamie Memory Alloeation: Funetions Calloe
and Realloe 825
The Uneonditional Braneh: Goto 827
Unions 829
Linkage Speeifieations 831
Closing Remarks 833
Summary • Terminology • Common Programming Error •
Portability Tips • Performance Tips • Software Engineering
Observations • Self-Review Exercises • Answers to Self-Review
Exercises • Exercises

Appendix A
A.l
A.2
A.3
A.4
A.5
A.6
A.7
A.8
A.9

C++ Syntax
Keywords
Lexieal eonventions
Basie eoneepts
Expressions
Statements
Dec1arations
Dec1arators
Classes
Derived c1asses

840
840
841
844
844
847
848
851
852
853

CONTENTS CONTENTS C++ How To PROGRAM xvii

A.10 Special member functions 853

803 A.11 Overloading 854

803 A.12 Templates 854
805 A.13 Exception handling 855
806
807 Appendix B Standard Library 856
807 B.l Errors <errno. h> 856
808 B.2 Common Definitions <stddef .h> 856
808 B.3 Diagnostics <assert .h> 857

Errors • BA Character Handling <ctype. h> 857
Self-Review B.5 Localization <locale. h> 858
~rcises B.6 Mathematics <math. h> 861

B.7 Nonlocal Jumps <setjmp.h> 863

815 B.8 Signal Handling <signal. h> 863
816 B.9 Variable Arguments <stdarg. h> 865

ms 816 B.lO Input/Output <stdio.h> 865

817 B.l1 General Utilities <stdlib.h> 873

818 B.12 String Handling <string. h> 879
IS 820 B.13 Date and Time <time. h> 882

822 B.14 Implementation Limits:
824 <limits.h> 885
824 <float.h> 886

825

825 Appendix C Operator Precedence Chart 888
827
829
831 Appendix D ASCII Character Set 889
833

rj;rror•
'ineering Appendix E Number Systems 891
Self-Review E.l Introduction 892

E.2 Abbreviating Binary Numbers as Octal and
Hexadecimal Numbers 895

840 E.3 Converting fram Octal Numbers and Hexadecimal
840 Numbers to Binary Numbers 896
841 EA Converting fram Binary, Octal, or Hexadecimal
844 to Decimal 896

844 E.5 Converting from Decimal to Binary, Octal, or
847 Hexadecimal 897

848 E.6 Negative Binary Numbers: Two's Complement
851 Notation 899
852 Summary. Terminology • Self-Review Exercises • Answers fo
853 Self-Review Exercises • Exercises

xviii C++ How To PROGRAM CONTENTS

Appendix F

Bibliography

Index

Resources 905

909

919

CONTENTS

905

909

919

Illustrations

Chapter 1 Introduction to Computers and C++ Programming
1.1 A typical C++ environment. 13
1.2 Text printing programo 16
1.3 Some common escape sequences. 18
lA Printing on one line with separate statements using cauto 19
1.5 Printing on multiple lines with a single statement

using cauto 20
1.6 An addition programo 20
1.7 A memory location showing the name and value of a

variable. 24
1.8 Memory locations after values for two variables have

been input. 24
1.9 Memory locations after a calculation. 25

1.10 Arithmetic operators. 25
1.11 Precedence of arithmetic operators. 27
1.12 Order in which a second degree polynomial is evaluated. 29
1.13 Equality and relational operators. 29
1.14 Using equality and relational operators. 30
1.15 Precedence and associativity of the operators

discussed so faro 32

Chapter 2 Control Structures
2.1 Flowcharting C++'s sequence structure. 55
2.2 C++ keywords. 56
2.3 Flowcharting the single-selection i f structure. 56
204 Flowcharting the double-selection if/else structure. 59
2.5 Flowcharting the while repetition structure. 63
2.6 Pseudocode algorithm that uses counter-controlled

repetition to solve the class average problem. 64
XIX

xx C++ How To PROGRAM ILLUSTRA TIONS

2.7 C++ program and sample execution for the class average
problem with counter-controlled repetition. 64

2.8 Pseudocode algorithm that uses sentinel-controlled
repetition to solve the class average problem. 68

2.9 C++ program and sample execution for the class average
problem with sentinel-controlled repetition. 68

2.10 Pseudocode for examination results problem. 74
2.11 C++ program and sample executions for examination

results problem. 75
2.12 Arithmetic assignment operators. 76
2.13 The increment and decrement operators. 77
2.14 The difference between preincrementing and

postincrementing. 78
2.15 Precedence of the operators encountered so far in the text. 79
2.16 Counter-controlled repetition. 80
2.17 Counter-controlled repetition with the for structure. 82
2.18 Components of a typical for header. 83
2.19 Flowcharting a typical for structure. 83
2.20 Summation with foro 86
2.21 Calculating compound interest with foro 88
2.22 An example using swi tch. 91
2.23 The swi tch multiple-selection structure. 94
2.24 Using the do/while structure. 97
2.25 The do/while repetition structure. 97
2.26 Using the break statement in a for structure. 98
2.27 Using the continue statement in a for structure. 99
2.28 Truth table for the && (logical AND) operator. 100
2.29 Truth table for the logical OR (1 1) operator. 101
2.30 Truth table for operator ! (logical negation). 102
2.31 Operator precedence and associativity. 102
2.32 C++'s single-entry/single-exit sequence, selection, and

repetition structures. 104
2.33 Rules for forming structured programs. 106
2.34 The simplest flowchart. 106
2.35 Repeatedly applying rule 2 of Fig. 2.33 to the simplest

flowchart. 106
2.36 Applying rule 3 of Fig. 2.33 to the simplest flowchart. 107
2.37 Stacked building blocks, nested building blocks, and over-

lapped building blocks. 108
2.38 An unstructured flowchart. 109

Chapter 3 Functions
3.1 Hierarchical boss function/worker function relationship. 138
3.2 Commonly used math library functions. 139

"USTRA TIONS ILLUSTRA TIONS C++ How To PROGRAM xxi

'erage 3.3 Using a programmer-defined function. 141

64 3.4 Programmer-defined maximumfunction. 143
3.5 Promotion hierarchy for built-in data types. 146

68 3.6 The standard library header files. 147

'erage 3.7 Shifted, scaled integers produced by 1 + rand () % 6. 149

68 3.8 Rolling a six-sided die 6000 times. 150

74 3.9 Randomizing the die-rolling programo 151
)n 3.10 Program to simulate the game of craps. 154

75 3.11 Sample runs for the game of craps. 155

76 3.12 A scoping example. 160

77 3.13 Recursive evaluation of 5!. 164
3.14 Ca1culating factorials with a recursive function. 164

78 3.15 Recursively generating Fibonacci numbers. 166

le text. 79 3.16 Set ofrecursive calls to function fibonacci. 167

80 3.17 Summary of recursion examples and exercises
e. 82 in the text. 170

83 3.18 Two ways to declare and use functions that take no
83 arguments. 171

86 3.19 Using an inline function to ca1culate the volume
88 of a cube. 173

91 3.20 An example of call-by-reference. 174

94 3.21 Attempting to use an uninitialized reference. 176

97 3.22 Using an initialized reference. 176

97 3.23 Using default arguments. 177

98 3.24 Using the unary scope resolution operator. 179

99 3.25 Using overloaded functions. 180

100 3.26 Name mangling to enable type-safe linkage. 180

101 3.27 Using template functions. 182

102 3.28 The Towers of Hanoi for the case with four disks. 205

102
and Chapter 4 Arrays

104 4.1 A 12-element array. 213
106 4.2 Operator precedence. 214
106 4.3 Initializing the elements of an array to zeros. 215

lest 4.4 Initializing the elements of an array with a declaration. 216
106 4.5 Generating the values to be placed into elements

1rt. 107 of an array. 217
d over- 4.6 A const object must be initialized. 218

108 4.7 CorrectIy initializing and using a constant variable. 218
109 4.8 Computing the sum of the elements of an array. 219

4.9 A simple student poll analysis programo 220
4.10 A program that prints histograms. 222

ship. 138 4.11 Dice-rolling program using arrays instead of swi tch. 223

139 l
4.12 Treating character arrays as strings. 225

xxii C++ How To PROGRAM ILLUSTRA TIONS ILLUSTRATI

4.13 Comparing static array initialization and automatic
array initialization. 226

4.14 Passing arrays and individual array elements to functions. 230
4.15 Demonstrating the const type qualifier. 231
4.16 Sorting an array with bubble sort. 233
4.17 Survey data analysis programo 234
4.18 Sample mn for the survey data analysis programo 237
4.19 Linear search of an array. 238
4.20 Binary search of a sorted array. 240
4.21 A double-subscripted array with three rows and four

columns. 243
4.22 Initializing multidimensional arrays. 244
4.23 Example of using double-subscripted arrays. 246
4.24 The 36 possible outcomes of rolling two dice. 258
4.25 The eight possible moves of the knight. 261
4.26 The 22 squares eliminated by placing a queen in the

upper left comer. 264

Chapter S Pointers and Strings
5.1 Directly and indirectly referencing a variable. 270
5.2 Graphical representation of a pointer pointing to an

integer variable in memory. 271
5.3 Representation ofy and yptr in memory. 271
5.4 The & and * pointer operators. 272
5.5 Operator precedence. 272
5.6 Cube a variable using call-by-value. 274
5.7 Cube a variable using call-by-reference with a pointer

argumento 274
5.8 Analysis of a typical call-by-value. 276
5.9 Analysis of a typical call-by-reference with a pointer

argumento 277
5.10 Converting a string to uppercase. 279
5.11 Printing a string one character at a time using a

non-constant pointer to constant data. 280
5.12 Attempting to modify data through a non-constant

pointer to constant data. 281
5.13 Attempting to modify a constant pointer to

non-constant data. 282
5.14 Attempting to modify a constant pointer to constant data. 283
5.15 Bubble :;ort with call-by-reference. 284
5.16 The sizeof operator when applied to an array

name returns the number of bytes in the array. 286
5.17 Using the sizeof operator to determine standard

data type sizes. 287

LLUSTRA TIONS 1LLUSTRA TIO'lS C++ How To PROGRAM xxiii

matic 5.18 The array v and a pointer variable vptr that points to v. 288
226 5.19 The pointer vptr after pointer arithmetic. 289

Jllctions. 230 5.20 Using four methods of referencing array elements. 293
231 5.21 Copying a string using array notation and pointer
233 notation. 294
234 5.22 A graphical representation of the sui t array. 295
237 5.23 Double-subscripted array representation of a deck
238 of cards. 296
240 5.24 Card dealing programo 299

óur 5.25 Sample run of card dealing programo 300
243 5.26 Multipurpose sorting program using function pointers. 301
244 5.27 The outputs of the bubble sort program in Fig. 5.26. 303
246 5.28 Demonstrating an array of pointers to functions. 304
258 5.29 The string manipulation functions of the string handling
261 library. 308

the 5.30 Using strcpy and strncpy. 310
264 5.31 Using strcat and strncat. 310

5.32 Using strcmp and strncmp. 311
5.33 Using strtok. 313

270 5.34 Using strlen. 314
an 5.35 Unshuffled deck array. 327

271 5.36 Sample shuffled deck array. 327
271 5.37 Simpletron Machine Language (SML) operation codeso 329
272 5.38 A sample dump. 333
272 5.39 The letters of the alphabet as expressed in
274 international Morse codeo 343

,inter
274 Chapter 6 Classes and Data Abstraction
276 6.1 Create a structure, set its members, and print it. 350

nter 6.2 Simple definition of class Time. 351
277 6.3 Abstract data type Time implementation as a class. 353
279 6.4 Accessing an object' s data members and member

functions through the object's name, through a
280 reference, and through a pointer to the object. 358

lt 6.5 Time class header file. 359
281 6.5 Time class member function definitions source file. 360

6.5 Driver program for Time class. 361
282 6.6 Erroneous attempt to access private members of a class. 363

mt data. 283 6.7 Using a utility function. 365
284 6.8 Using a constructor with default arguments. 368

6.9 Demonstrating the order in which constructors and
286 destructors are called. 373

'd 6.10 Declaration of the Time class. 376
287 6.10 Member function definitions for Time class. 377

xxiv C++ How To PROGRAM 1LLUSTRA TIONS

6.10 Using set and get functions. 378
6.11 Returning a reference to a private data

member. 380
6.12 Assigning one object to another with

default memberwise copy. 382

Chapter 7 Classes: Part 11
7.1 Using a Time c1ass with const objects and

const member functions. 398
7.2 Using a member initializer to initialize a constant of a

built-in data type. 401
7.3 Erroneous attempt to initia1ize a constant of a

built-in data type by assignment. 402
7.4 Using member-object initializers. 403
7.5 Friends can access private members of a c1ass. 408
7.6 Non-friend/non-member functions cannot access

private c1ass members. 409
7.7 Using the this pointer. 410
7.8 Chaining member function calls. 412
7.9 Using a static data member to maintain a count of

the number of objects of a c1ass. 416

Chapter 8 Operator Overloading
8.1 Operators that can be overloaded. 434
8.2 Operators that cannot be overloaded. 435
8.3 User-defined stream-insertion and stream-extraction

operators. 438
8.4 Definition of c1ass Array. 439
8.4 Member function definitions for c1ass Array. 443
8.4 Driver for c1ass Array. 445
8.4 Output fram driver for c1assArray. 447
8.5 Definition of a basic String c1ass. 454
8.5 Member function definitions for c1ass String. 454
8.5 Driver for testing c1ass String. 458
8.5 Output fram driver for testing c1ass String. 460
8.6 Definition of c1ass Date. 466
8.6 Member function definitions for c1ass Date. 466
8.6 Driver for c1ass Date. 469
8.6 Output fram driver for c1assDate. 470
8.7 Definition of c1ass Complex. 476
8.7 Member function definitions for c1ass Complex 476
8.7 Driver for c1ass Complex. 477
8.7 Output fram driver for c1assComplex. 478
8.8 A user-defined huge integer c1ass. 478

LLUSTRA TIONS ILLUSTRA TIONS C++ How To PROGRAM xxv

378 Chapter 9 Inheritance
9.1 Some simple inheritanee examples. 486

380 9.2 An inheritanee hierarehy for university eommunity
members. 487

382 9.3 A portion of a Shape class hierarehy. 487
9.4 Definition of class point. 489
9.4 Member funetion definitions for class Point. 489
9.4 Definition of class Circle. 490

398 9.4 Member funetion definition for class Circle. 490
ofa 9.4 Casting base-class pointers to derived-class pointers. 491

401 9.5 Definition of class Employee. 494
9.5 Member funetion definitions for class Employee. 495

402 9.5 Definition of class HourlyWorker. 495
403 9.5 Member funetion definitions for class HourlyWorker. 496
408 9.5 Redefining a base-class member funetion in a

derived class. 496
409 9.6 Summary of base-class member aeeessibility in a

410 derived class. 498
412 9.7 Definition of class Point. 500

9.7 Member funetion definitions for class point. 500
416 9.7 Definition of class Circle. 501

9.7 Member funetion definitions for class Circle. 501
9.7 Order in whieh base-class and derived-class

434 eonstruetors and destruetors are ealled. 502
435 9.8 Definition of class point. 506

on 9.8 Member funetions for class Point. 506
438 9.8 Driver for class Point. 507
439 9.9 Definition of class Circle. 507
443 9.9 Member funetion definitions for class Circle. 508
445 9.9 Driver for elass Circle. 509
447 9.10 Definition of class Cylinder. 510
454 9.10 Member funetion and friend funetion definitions for

454 class Cylinder. 511
458 9.10 Driver for class Cylinder. 512
460 9.11 Definition of class Basel. 513
466 9.11 Definition of class Base2. 513
466 9.11 Definition of class Derived. 514
469 9.11 Member funetion definitions for class Deri ved. 514
470 9.11 Driver for the multiple inheritanee example. 515
476
476 Chapter 10 Virtual Functions and Polyrnorphisrn

477 10.1 Abstraet base class Employee. 531
478 i 10.1 Member funetion definitions for abstraet base class

478 l
Employee. 531

xxvi C++ How To PROGRAM ILLUSTRA TIONS ILLUSTRATI

10.1 Class Boss derived from abstract base c1ass
Employee. 533

10.1 Member function definitions for c1ass Boss. 533
10.1 Class CommissionWorker derived from abstract

base c1ass Employee. 534
10.1 Member function definitions for c1ass Commission-

Worker. 535
10.1 Class PieceWorker derived from abstract base c1ass

Employee. 536
10.1 Member function definitions for c1ass PieceWorker. 536
10.1 Class HourlyWorker derived from abstract base c1ass

Employee. 537
10.1 Member function definitions for c1ass HourlyWorker. 537
10.1 Employee c1ass derivation hierarchy that uses

an abstract base c1ass. 538
10.2 Definition of abstract base c1ass Shape. 542
10.2 Definition of c1ass point. 542
10.2 Member function definitions for c1ass Point. 543
10.2 Definition of c1ass Circle. 543
10.2 Member function definitions for c1ass Circle. 544
10.2 Definition of c1ass Cylinder. 544
10.2 Member function definitions for c1ass Cylinder. 545
10.2 Driver for point, circ1e, cylinder hierarchy. 546

Chapter 11 Stream Input/Output
11.1 Portion of the stream l/O c1ass hierarchy. 559
11.2 Portion of stream l/O c1ass hierarchy with key

file-processing c1asses. 560
11.3 Outputting a string using stream insertion. 561
11.4 Outputting a string using two stream insertions. 561
11.5 Using the endl stream manipulator. 562
11.6 Outputting expression values. 562
11.7 Concatenating the overloaded < < operator. 563
11.8 Printing the address stored in a char * variable. 564
11.9 Ca1culating the sum of two integers input from

the keyboard with cin and the stream-extraction
operator. 565

11.10 Avoiding a precedence problem between the
stream-insertion operator and the conditional operator. 565

11.11 Stream-extraction operator returning false on
end-of -file. 566

11.12 Using member functions get, put, and eof. 567
11.13 Contrasting input of a string using cin with stream

extraction and input with cin. get. 568

LLUSTRA TIONS ILLUSTRA TIONS C++ How To PROGRAM xxvii

11.14 Character input with member function
533 get1ine. 569
533 11.15 Unformatted l/O with the read, gcount and

act write member functions. 571
534 11.16 Using the hex, oct, dec and setbase stream

ion- manipu1ators. 572
535 11.17 Controlling precision of floating-point va1ues. 573

: c1ass 11.18 Demonstrating the width member function. 574
536 11.19 Creating and testing user-defined, nonparameterized

rker. 536 stream manipu1ators. 575
se c1ass 11.20 Format state flags. 576

537 11.21 Controlling the printing of trai1ing zeros and decimal
orker. 537 points with float va1ues. 577

11.22 Left-justification and right-justification. 578
538 11.23 Printing an integer with interna1 spacing and forcing
542 the plus signo 579
542 11.24 Using the fi11 member function and the setfi11
543 manipu1ator to change the padding character for
543 fie1ds 1arger than the va1ues being printed. 580
544 11.25 Using the ios : :showbase flag. 581
544 11.26 Disp1aying floating-point va1ues in system defauIt,

r. 545 scientific, and fixed formats. 582
546 11.27 Using the ios: :uppercase flag. 583

11.28 Demonstrating the f1ags member function. 584
11.29 Testing error states. 586

559 11.30 User-defined stream-insertion and stream-extraction
operators. 588

560
561 Chapter 12 Templates
561 12.1 A temp1ate function. 606
562 12.2 Using temp1ate functions. 607
562 12.3 Definition of c1ass temp1ate Stack. 609
563 12.3 Driver for c1ass temp1ate Stack. 611
564

Chapter 13 Exception Handling
13.1 A simple exception handling example with divide

565 by zero. 628

~rator. 565 Chapter 14 FiJe Processing and String Stream l/O
14.1 The data hierarchy. 652

566 14.2 C++'s view of afile of n bytes. 653
567 14.3 Portion of stream l/O c1ass hierarchy. 653

~am 14.4 Creating a sequentia1 fi1e. 654
568 14.5 Fi1e open modes. 655

'I
I

xxviii C++ How To PROGRAM ILLUSTRA T10NS

14.6 End-of-file key combinations for various popular
computer systems. 657

14.7 Reading and printing a sequen tial file. 659
14.8 Credit inquiry programo 661

14.9 Sample output of the credit inquiry program of
Fig. 14.8. 663

14.10 C++'s view of a random access fiJe. 664
14.11 Creating a random access fiJe sequentially. 665
14.12 Writing data randomly to a random access file. 667
14.13 Sample execution of the program in Fig. 14.12. 668
14.14 Reading a random access file sequentially. 669
14.15 Bank account programo 671
14.16 Using a dynamically allocated ostrstrearn object. 676
14.17 Demonstrating an ostrstrearn object using a

previously defined array. 677
14.18 Demonstrating input from an istrstrearn object. 678

Chapter 15 Data Structures
15.1 Two self-referential class objects linked together. 694
15.2 A graphical representation of a listo 696
15.3 Manipulating a linked listo 697
15.4 Sample output for the program of Fig. 15.3. 703
15.5 The insertAtFront operation. 705
15.6 A graphical representation of the insertAtBack

operation. 706
15.7 A graphical representation of the rernoveFrornFront

operation. 707
15.8 A graphical representation of the rernoveFrornBack

operation. 708
15.9 A simple stack programo 709

15.10 Sample output from the program of Fig. 15.9. 711
15.11 A simple stack program using composition. 712
15.12 Processing a queue. 713
15.13 Sample output from the program in Fig. 15.12. 715
15.14 A graphical representation of a binary tree. 716
15.15 A binary search tree. 717
15.16 Creating and traversing a binary tree. 718
15.17 Sample output from the program of Fig. 15.16. 721
15.18 A binary search tree. 722
15.J9 A 15-node binary search tree. 727
15.20 Simple commands. 734
15.21 Simple program that determines the sum of two

integers. 735
15.22 Simple program that finds the larger of two integers. 735

LLUSTRATIONS ILLUSTRA TIONS C++ How To PROGRAM xxix

15.23 Ca\culate the squares of several integers. 736
657 15.24 Writing, compiling, and executing a Simple
659 language programo 736
661 15.25 SML instructions produced after the compiler's

first pass. 740
663 15.26 Symbol table for program of Fig. 15.25. 741
664 15.27 Unoptimized code from the program of Fig. 15.25. 744
665 15.28 Optimized code for the program of Fig. 15.25. 745
667
668 Chapter 16 Bits, Characters, Strings and Structures
669 16.1 A possible storage alignment for a variable of type
671 Example showing an undefined area in memory. 752

ject. 676 16.2 High-performance card shuffling and dealing
simulation. 755

677 16.3 Output for the high-performance card shuffling and
~ct. 678 dealing simulation. 756

16.4 The bitwise operators. 757
16.5 Printing an unsigned integer in bits. 758

694 16.6 Results of combining two bits with the bitwise ANO
696 operator &. 759
697 16.7 Using the bitwise ANO, bitwise inclusive OR, bitwise
703 exclusive OR, and bitwise complement operators. 759
705 16.8 Output for the program of Fig. 16.7. 761

ck 16.9 Results of combining two bits with the bitwise
706 inclusive OR operator l. 761

~ront 16.10 Results of combining two bits with the bitwise
707 exclusive OR operator ". 762

Back 16.11 Using the bitwise shift operators. 762
708 16.12 The bitwise assignment operators. 763
709 16.13 Operator precedence and associativity. 764
711 16.14 Using bit fields to store a deck of cards. 765
712 16.15 Output ofthe program in Fig. 16.14. 767
713 16.16 Summary of the character handling library functions. 768
715 16.17 Using isdigit, isalpha, isalnum, and
716 isxdigit. 769
717 16.18 Using islower, isupper, tolower, and
718 toupper. 770
721 16.19 U~ngisspace,iscntrl,ispunct,isprint,
722 and isgraph. 772
727 16.20 Summary of the string conversion functions of the
734 general utilities library. 773

16.21 Using atof. 774
735 16.22 Using atoi. 774

~ers. 735 16.23 Using ato!. 775

xxx C++ How To PROGRAM 1LLUSTRA T10NS

16.24 Using strtod. 776
16.25 Using strtol. 776
16.26 Using strtoul. 777
16.27 Search functions of the string handling library. 778
16.28 Using strchr. 779
16.29 Using strcspn. 779
16.30 Using strpbrk. 780
16.31 Using strrchr. 780
16.32 Using strspn. 781
16.33 Using strstr. 782
16.34 The memory functions ofthe string handling library. 782
16.35 Using memcpy. 783
16.36 Using mernmove. 784
16.37 Using memcmp. 784
16.38 Using memchr. 785
16.39 Using memset. 785
16.40 Another string manipulation function of the string

handling library. 786
16.41 Using strerror. 786

Chapter 17 The Preprocessor
17.1 The predefined symbolic constants. 808

Chapter 18 Other Topics
18.1 The type and the macros defined in header stdarg. h 818
18.2 Using variable-length argument lists. 819
18.3 Using command-line arguments. 820
18.4 Using functions exit and atexit. 823
18.5 The signals defined in header signal. h. 825
18.6 Using signal handling. 826
18.7 Using goto. 828
18.8 Printing the value of a union in both member data types. 831
18.9 Using an anonymous union. 832

AppendixE Number Systems
E.l Digits of the binary, octal, decimal, and hexadecimal

number systems. 893
E.2 Comparison of the binary, octal, decimal, and

hexadecimal number systems. 893
E.3 Positional values in the decimal number system. 893
E.4 Positional values in the binary number system. 894
E.5 Positional values in the octal number system. 894
E.6 Positional values in the hexadecimal number system. 895
E.7 Decimal, binary, octal, and hexadecimal equivalents. 895

ILLUSTRA TIONS

E.8
E.9

E.lO

C++ How To PROGRAM xxxi

Converting a binary number to decimal. 897
Converting an octal number to decimal. 897
Converting a hexadecimal number to decimal. 897

	page1
	titles
	Contents

	images
	image1

	page2
	images
	image1

	tables
	table1

	page3
	titles
	110

	images
	image1

	page4
	images
	image1

	tables
	table1

	page5
	images
	image1

	page6
	titles
	C++ How To PROGRAM

	images
	image1

	page7
	images
	image1

	tables
	table1

	page8
	images
	image1

	page9
	images
	image1

	tables
	table1

	page10
	images
	image1

	page11
	images
	image1

	tables
	table1

	page12
	images
	image1
	image2

	page13
	titles
	Illustrations

	images
	image1

	tables
	table1

	page14
	images
	image1

	tables
	table1

	page15
	images
	image1

	tables
	table1

	page16
	images
	image1

	tables
	table1

	page17
	images
	image1

	tables
	table1

	page18
	images
	image1

	tables
	table1

	page19
	images
	image1

	tables
	table1

	page20
	images
	image1
	image2

	tables
	table1

	page21
	images
	image1

	tables
	table1

	page22
	titles
	'I

	images
	image1

	tables
	table1

	page23
	images
	image1

	tables
	table1

	page24
	images
	image1
	image2

	tables
	table1

	page25
	images
	image1

