Contents

Dedication ii Preface vii Summary xi

Rule 1.	Achieve 1.1 1.2 1.3 1.4 1.5 1.6	e a good quality melt 1 Background 1 Melting 3 Holding 3 Pouring 4 Melt treatments 5 1.5.1 Degassing 5 1.5.2 Additions 6 Filtration 7 1.6.1 Packed beds 7 1.6.2 Alternative varieties of filters 8 1.6.3 Practical aspects 8
Rule 2.	Avoid t critical 2.1 2.2 2.3	urbulent entrainment (the velocity requirement) 9 Maximum velocity requirement 10 The 'no fall' requirement 13 Filling system design 15 2.3.1 Gravity pouring of open-top moulds 15 2.3.2 Gravity pouring of closed moulds 16 2.3.3 Horizontal transfer casting 68 2.3.4 Counter-gravity 72 2.3.5 Surface tension controlled filling 75 2.3.6 Inclusion control: filters and traps 78 2.3.7 Practical calculation of the filling system 93
Rule 3.	Avoid l surface non-rev 3.1 3.2	<i>aminar entrainment of the</i> <i>film (the non-stopping,</i> <i>tersing condition)</i> 102 Continuous expansion of the meniscus 102 Arrest of vertical progress 103

3.3	Waterfall	flow	104	
			~	

Horizontal stream flow 104 3.4

Hesitation and reversal 106 3.5

Rule 4. Avoid bubble damage 108

- 4.1 Gravity-filled running systems 111
- Pumped and low-pressure filling 4.2 systems 112

Rule 5. Avoid core blows 114

5.1 Background 114 5.2

Prevention 117

Rule 6. Avoid shrinkage damage 120 6.1

Feeding systems design background 120

- 6.1.1 Gravity feeding 123
- Computer modelling of 6.1.2
- feeding 124 Random perturbations to 6.1.3
- feeding patterns 124 Dangers of solid 6.1.4
- feeding 125 The non-feeding roles of
- 6.1.5 feeders 125
- The seven feeding rules 126 6.2 Rule 1: Do not feed 126 Rule 2: Heat-transfer requirement 127
 - Rule 3: Mass-transfer requirement 128 Rule 4: Junction requirement 132
 - Rule 5: Feed path requirement 133 Rule 6: Pressure gradient
 - requirement 138 Rule 7: Pressure
- requirement 140 The new feeding logic 142 6.3 6.3.1 Background 142 6.3.2
- The new approach 143 Active feeding 145 6.4
- 6.5 Freezing systems design 146

6.5.1	External chill	s 147
652	Internal chills	149

6.5.3 Fins 150

Rule 7. Avoid convection damage 157 Convection: the academic 7.1

- background 157 7.2 Convection: the engineering
- imperatives 157
- Convection damage and casting 7.3 section thickness 160
- 7.4 Countering convection 162

Rule 8. Reduce segregation damage 163

Rule 9. Reduce residual stress (the 'no water quench' requirement) 166 9.1 Introduction

- 9.2 Residual stress from casting 166
- 9.3 Residual stress from
- quenching 167 Distortion 172 94
- 9.5 Heat treatment developments 173
- 9.6 Epilogue 174
- Rule 10. Provide location points 175
 - 10.1 Datums 175
 - 10.2 Location points 176

- 10.2.1 Rectilinear systems 17710.2.2 Cylindrical systems 17810.2.3 Trigonal systems 179

- 10.2.4 Thin-walled boxes 179
- 10.3 Location jigs 180
- 10.4 Clamping points 180
- 10.5 Mould design: the practical issues 181 Casting accuracy 182 Tooling accuracy 183 Mould accuracy 183
- 10.6
- 10.7
- 10.8
- 10.9 Summary of factors affecting accuracy 186
- 10.10 Metrology 186

Appendix 188

The 1.5 factor 188 The Bernoulli equation 189 Rate of pour of steel castings from a bottom-pour ladle 191 Running system calculation record 191 Design methodology for investment castings 194

References 195 Index 199