CONTENTS

1.	Elem	entary wave mechanics	3
	1.1	The Schrödinger equation	3
	1.2	Variational principle for the ground state	5
	1.3	The Hartree–Fock approximation	7
	1.4	Correlation energy	13
	1.5	Electron density	14
	1.6	Hellmann-Feynman theorems and virial theorem	16
2.	Dens	ity matrices	20
	2.1	Description of quantum states and the Dirac notation	20
	2.2	Density operators	24
	2.3	Reduced density matrices for fermion systems	27
	2.4	Spinless density matrices	32
	2.5	Hartree-Fock theory in density-matrix form	35
	2.6	The N-representability of reduced density matrices	40
	2.7	Statistical mechanics	44
3.	Dens	ity-functional theory	47
	3.1	The original idea: The Thomas-Fermi model	47
	3.2	The Hohenberg-Kohn theorems	51
	3.3	The v - and N -representability of an electron density	53
	3.4	The Levy constrained-search formulation	56
	3.5	Finite-temperature canonical-ensemble theory	60
	3.6	Finite-temperature grand-canonical-ensemble theory	64
	3.7	Finite-temperature ensemble theory of classical systems	66
4.	The c	hemical potential	70
	4.1	Chemical potential in the grand canonical ensemble at	
		zero temperature	70
	4.2	Physical meaning of the chemical potential	74
	4.3	Detailed consideration of the grand canonical ensemble	
		near zero temperature	75
	4.4	The chemical potential for a pure state and in the	
		canonical ensemble	81
	4.5	Discussion	84

CO	NT	'EN'	ГS

5	Chan	signly actential dominations	07
5.	Chen	Change from any any distant and the	87
	5.1	Change from one ground state to another	87
	5.2	Electronegativity and electronegativity equalization	90
	5.3	Hardness and softness	95
	5.4	Reactivity index: the Fukui function	99
	5.5	Local softness, local hardness, and softness and hardness	
		kernels	101
6.	Thon	nas-Fermi and related models	105
	6.1	The traditional TF and TFD models	105
	6.2	Implementation	110
	6.3	Three theorems in Thomas–Fermi theory	114
	6.4	Assessment and modification	116
	6.5	An alternative derivation and a Gaussian model	118
	6.6	The purely local model	123
	6.7	Conventional gradient correction	127
	6.8	The Thomas-Fermi-Dirac-Weizsacker model	132
	6.9	Various related considerations	136
7.	The k	Cohn-Sham method: Basic principles	142
	7 1	Introduction of orbitals and the Kohn-Sham equations	142
	72	Derivation of the Kohn-Sham equations	142
	73	More on the kinetic-energy functional	140
	74	Local-density and X approximations	152
	7.5	The integral formulation	152
	7.6	Extension to nonintegral occupation numbers and the	157
	7.0	transition-state concept	162
		transition-state concept	103
8.	The k	Kohn-Sham method: Elaboration	169
	8.1	Spin-density-functional theory	169
	8.2	Spin-density functionals and the local spin-density	
		approximations	174
	8.3	Self-interaction correction	180
	8.4	The Hartree-Fock-Kohn-Sham method	183
	8.5	The exchange-correlation-energy functional via the	
		exchange-correlation hole	186
	8.6	The exchange-correlation-energy functional via wave-	
		vector analysis	194
	8.7	Other studies of the exchange-correlation-energy	
		functional	197
9.	Extensions		201
	9.1	Finite-temperature Kohn-Sham theory	201
	9.2	Excited states	204

viii

	9.3	Time-dependent systems	208
	9.4	Dynamic linear response	210
	9.5	Density-matrix-functional theory	213
	9.6	Nonelectronic and multicomponent systems	215
10.	Aspect	s of atoms and molecules	218
	10.1	Remarks on the problem of chemical binding	218
	10.2	Interatomic forces	219
	10.3	Atoms in molecules	221
	10.4	More on the HSAB principle	224
	10.5	Modeling the chemical bond: The bond-charge model	229
	10.6	Semiempirical density-functional theory	234
11.	Miscel	lany	237
	11.1	Scaling relations	237
	11.2	A maximum-entropy approach to density-functional	
		theory	239
	11.3	Other topics	243
	11.4	Final remarks	244
Ap	pendix	A Functionals	246
Ap	pendix	B Convex functions and functionals	255
Ap	pendix	C Second quantization for fermions	259
Ap	pendix	D The Wigner distribution function and the \hbar	
		semiclassical expansion	265
Ap	pendix	E The uniform electron gas	271
Ap	pendix	F Tables of values of electronegativities and hardnesses	276
Ap	pendix	G The review literature of density-functional theory	281
Bib	liograp	hy	285
Author index			319
Sub	ject inc	lex	325

CONTENTS

ix