CONTENTS

Aut	hors' Prefac	ce to the English Edition	iii
Edi	tor's Prefac	e to the English Edition	ν
Cha	pter 6 M	athematical Description of Turbulence.	
Ciia		pectral Functions	1
			1
		al Representations of Stationary Processes and	1
		geneous Fields	- 5
	11.1	Spectral Representation of Stationary Processes	1
	11.2	Spectral Representation of Homogeneous Fields	16
	11.3	Partial Derivatives of Homogeneous Fields. Divergence	
		and Curl of a Vector Field	23
	_	oic Random Fields	29
	12.1	Correlation Functions and Spectra of Scalar	
		Isotropic Fields	29
	12.2	Correlation Functions and Spectra of Isotropic	
		Fields	35
	12.3	Solenoidal and Potential Isotropic Vector Fields	49
	12.4	One-Point and Two-Point Higher-Order Moments of	
		Isotropic Fields	58
	12.5	Three-Point Moments of Isotropic Fields	75
	13. Locally	Homogeneous and Locally Isotropic	
	Rando	m Fields	80
	13.1	Processes with Stationary Increments	80
	13.2	Locally Homogeneous Fields	93
	13.3	Locally Isotropic Fields	98
Cha	pter 7 Is	otropic Turbulence	113
		ons for the Correlation and Spectral Functions of	
		pic Turbulence	113
	14.1		
		Possibilities of its Experimental Realization	113
	14.2	Equations for the Velocity Correlations	
	14.3	Equations for the Velocity Spectra	
	14.4	Correlations and Spectra Containing Pressure	
	14.5	Correlations and Spectra Containing the	
		Temperature	136

15.	The Sim	plest Consequences of the Correlation and	
	Spectral	Equations	141
	15.1	Balance Equations for Energy, Vorticity, and	
		Temperature-Fluctuation Intensity	141
	15.2	The Loitsyanskii and Corrsin Integrals	146
	15.3	Final Period of Decay of Isotropic Turbulence	
	15.4	Experimental Data on the Final Period of Decay.	
		The Decay of Homogeneous Turbulence	162
	15.5	Asymptotic Behavior of the Correlations and Spectra	
		of Homogeneous Turbulence in the Range of Large	
		Length Scales (or Small Wave Numbers)	169
	15.6	The Influence of the Spectrum Singularity on the	
		Final Period Decay	174
16.	Self-Pre	servation Hypotheses	
	16.1	The von Karman Hypothesis on the Self-Preservation	
		of the Velocity Correlation Functions	177
	16.2	Less Stringent Forms of the von Karman Hypothesis	181
	16.3	Spectral Formulation of the Self-Preservation	
		Hypotheses	185
	16.4	Experimental Verification of the Self-Preservation	
		Hypotheses	189
	16.5	The Kolmogorov Hypotheses on Small-Scale	
		Self-Preservation at High Enough Reynolds Numbers	197
	16.6	Conditions for the Existence of Kolmogorov	
		Self-Preservation in Grid Turbulence	204
	16.7	The Meso-Scale Quasi-Equilibrium Hypothesis.	
		Self-Preservation of Temperature Fluctuations	210
17.	Spectral	Energy-Transfer Hypotheses	212
	17.1	Approximate Formulas for the Spectral Energy	
		Transfer	212
	17.2	Application of the Energy Transfer Hypotheses to	
		the Study of the Shape of the Spectrum in the	
		Quasi-Equilibrium Range	225
	17.3	Application of the Energy-Transfer Hypotheses to	
		Decaying Turbulence behind a Grid	235
	17.4	Self-Preserving Solutions of the Approximate	
		Equations for the Energy Spectrum	237
18.	The Mil	lionshchikov Zero-Fourth-Cumulant Hypothesis and	
	its Appl	ication to the Investigation of Pressure and	
	Accelera	ation Fluctuations	241
	18.1	The Zero-Fourth-Cumulant Hypothesis and the	
		Data on Velocity Probability Distributions	
	18.2	Calculation of the Pressure Correlation and Spectra	
		Estimation of the Turbulent Acceleration Fluctuations	

x CONTENTS

		22.3	Behavior of the Turbulent Energy Spectrum in the	
			Far Dissipation Range	421
		22.4	Behavior of the Temperature Spectrum at Very	
			Large Wave Numbers	433
2	23.	Experim	nental Data on the Fine Scale Structure of	
			ed Turbulence	449
		23.1	Methods of Measurement; Application of Taylor's	
			Frozen-Turbulence Hypothesis	449
		23.2	Verification of the Local Isotropy Assumption	
		23.3	Verification of the Second Kolmogorov Similarity	
			Hypothesis for the Velocity Fluctuations	461
		23.4	Verification of the First Kolmogorov Similarity	
		2011	Hypothesis for the Velocity Field	486
		23.5	Data on the Local Structure of the Temperature and	
		20.0	other Scalar Fields Mixed by Turbulence	494
		23.6	Data on Turbulence Spectra in the Atmosphere	
		20.0	beyond the Low-Frequency Limit of the Inertial	
			Subrange	517
	14	Diffusio	on in an Isotropic Turbulence	
-		24.1	Diffusion in an Isotropic Turbulence. Statistical	521
		21.1	Characteristics of the Motion of a Fluid Particle	527
		24.2	Statistical Characteristics of the Motion of a Pair of	02,
		21.2	Fluid Particles	536
		24.3	Relative Diffusion and Richardson's Four-Thirds	550
		24.5	Law	551
		24.4	Hypotheses on the Probability Distributions of	551
		27.7	Local Diffusion Characteristics	567
		24.5	Material Line and Surface Stretching in Turbulent	507
		24.5	Flows	578
	25	Refined	Treatment of the Local Structure of Turbulence,	570
	4 J.		into Account Fluctuations in Dissipation Rate	584
		25.1		
		25.2		
		25.2		
		25.4		374
		23.4	of Small-Scale Turbulence	640
		25.5		040
		23.3	Hypothesis	650
			riypotnesis	030
Chapt	tor	o Wa	we Propagation Through Turbulence	653
			ation of Electromagnetic and Sound Waves in a	055
	20.		ent Medium	652
		26.1	Foundations of the Theory of Electromagnetic	055
		20.1	Wave Propagation in a Turbulent Medium	652
			wave rropagation in a Turbulent Medium	033

хi

	26.2	Sound Propagation in a Turbulent Atmosphere	668
	26.3	Turbulent Scattering of Electromagnetic and	
	1212 0	Sound Waves	674
	26.4	Fluctuations in the Amplitude and Phase of	
		Electromagnetic and Sound Waves in a Turbulent	
	265	Atmosphere	
27	26.5	Strong Fluctuations of Wave Amplitude	
27.		Scintillation	/21
	27.1	Fluctuations in the Amplitude and Phase of Star	701
	27.2	Light Observed on the Earth's Surface	/21
	21.2	The Effect of Telescope Averaging and Scintillation of	720
	27.3	Stellar and Planetary Images Time Spectra of Fluctuations in the Intensity of	149
	21.3	Stellar Images in Telescopes	722
	27.4	Chromatic Stellar Scintillation	
	27.4	Ciroliado Stoliai Sciittiladoli	131
Chapter	10 Fu	inctional Formulation of the Turbulence	
		oblem	743
28.		ons for the Characteristic Functional.	
	28.1	Equations for the Spatial Characteristic Functional	,
		of the Velocity Field	743
	28.2	Spectral Form of the Equations for the Spatial	
		Characteristic Functional	751
	28.3	Equations for the Space-Time Characteristic	
		Functional	760
	28.4	Equations for the Characteristic Functional in the	
		Presence of External Forces	763
29.	Method	ls of Solving the Equations for the Characteristic	
	Functio	onal	773
	29.1	Use of a Functional Power Series	
	29.2	Zero-Order Approximation in the Reynolds Number	
	29.3	Expansion in Powers of the Reynolds Number	
	29.4	Other Expansion Schemes	
	29.5	Use of Functional Integrals	802
~			
		2	
		Remarks to Volume 1	
		me 1	
Subject	Index		871