Contents

Preface				
1	Turbu	lent combustion: The state of the art	1	
-	1.1	What is specific about turbulence with combustion?	1	
	1.2	Statistical description of turbulent flows	5	
	1.3	Navier-Stokes equations and turbulence models	10	
	1.4	Two-point velocity correlations and turbulent scales	13	
	1.5	Balance equations for reactive scalars	18	
	1.6	Chemical reaction rates and multistep asymptotics	22	
	1.7	Moment methods for reactive scalars	29	
	1.8	Dissipation and scalar transport of nonreacting and		
		linearly reacting scalars	30	
	1.9	The eddy-break-up and the eddy dissipation		
		models	33	
	1.10	The pdf transport equation model	35	
	1.11	The laminar flamelet concept	42	
	1.12	The concept of conditional moment closure	53	
	1.13	The linear eddy model	55	
	1.14	Combustion models used in large eddy simulation	57	
	1.15	Summary of turbulent combustion models	63	
2	Pren	nixed turbulent combustion	66	
_	2.1	Introduction	66	
	2.2	Laminar and turbulent burning velocities	69	
	2.3	Regimes in premixed turbulent combustion	78	
	2.4	The Bray-Moss-Libby model and the Coherent		
		Flame model	87	

viii Contents

	2.3	ine level set approach for the corrugated namelets	
	2.5	regime	9
	2.6	The level set approach for the thin reaction zones	
	2 =	regime	104
	2.7	A common level set equation for both regimes	10'
	2.8	Modeling premixed turbulent combustion based on	
		the level set approach	109
	2.9	Equations for the mean and the variance of G	114
	2.10	The turbulent burning velocity	119
	2.11	A model equation for the flame surface area ratio	12'
	2.12	Effects of gas expansion on the turbulent burning	
		velocity	. 13′
	2.13	Laminar flamelet equations for premixed	
		combustion	140
	2.14	Flamelet equations in premixed turbulent	
		combustion	152
	2.15	The presumed shape pdf approach	150
	2.16	Numerical calculations of one-dimensional and	
		multidimensional premixed turbulent flames	15'
	2.17	A numerical example using the presumed shape pdf	
		approach	162
	2.18	Concluding remarks	168
3	Nonp	remixed turbulent combustion	170
	3.1	Introduction	170
	3.2	The mixture fraction variable	172
	3.3	The Burke–Schumann and the equilibrium solutions	176
	3.4	Nonequilibrium flames	178
	3.5	Numerical and asymptotic solutions of counterflow	170
		diffusion flames	186
	3.6	Regimes in nonpremixed turbulent combustion	190
	3.7	Modeling nonpremixed turbulent combustion	194
	3.8	The presumed shape pdf approach	196
	3.9	Turbulent jet diffusion flames	198
	3.10	Experimental data from turbulent jet diffusion	170
	0.10	flames	203
	3.11	Laminar flamelet equations for nonpremixed	202
	2.11	combustion	207
	3.12	Flamelet equations in nonpremixed turbulent	201
	5.12	combustion	212
		Compagnon	414

Contents

		Contents	ix
	3.13	Steady versus unsteady flamelet modeling	219
	3.14	Predictions of reactive scalar fields and pollutant	217
		formation in turbulent jet diffusion flames	222
	3.15	Combustion modeling of gas turbines, burners, and	
		direct injection diesel engines	229
	3.16	Concluding remarks	235
	4 Partia	ally premixed turbulent combustion	237
,	4.1	Introduction	237
	4.2	Lifted turbulent jet diffusion flames	238
	4.3	Triple flames as a key element of partially premixed	
		combustion	245
,	4.4	Modeling turbulent flame propagation in partially	
:-	4.5	premixed systems	251
	4.5	Numerical simulation of lift-off heights in turbulent	
	4.6	jet flames	255
	4.6	Scaling of the lift-off height	258
	4.7	Concluding remarks	261
	Epilogue		263
Glossary			265
B ibliography			263 267
Author Index			295
	Subject Index		302
			302