Contents

Preface	ix
Introduction	1
Part I Geometry	
1 The Klein correspondence	7
1.1 Projective space and Grassmannian manifolds	7
1.2 Twistor manifolds and correspondences	19
1.3 The Plücker embedding of M into P_5	26
1.4 The linear geometry of the Klein quadric	28
1.5 Group actions and homogeneous structures	36
1.6 Minkowski and Euclidean space	45
2 Fiber bundles	68
2.1 Vector bundles and principal bundles	68
2.2 Differential forms	92
2.3 Tensor and spinor bundles	115
2.4 Connections and curvature	131
3 The algebraic topology of manifolds and bundles	148
3.1 Homotopy and homology	149
3.2 Sheaf theory	166
3.3 Sheaf cohomology	175
3.4 Characteristic classes	197
3.5 Clifford algebras and spin bundles	208
3.6 Spectral sequences	218
Part II Classical field theory	
4 Linear field theories	241
4.1 The wave equation and Maxwell's equations	241
4.2 Spinors and spinor fields	245
4.3 The action principle and interactions	253
4.4 Poincaré and conformal invariance	258
5 Gauge theory	263
5.1 The essentials of gauge theory	264

5.2 Yang-Mills instantons 5.3 Magnetic poles	270 279
	279
6 General relativity	286
6.1 Space-time, spinors, and Einstein's equations	286
6.2 Self-duality and gravitational instantons	293
Part III The Penrose transform	
7 Massless free fields	301
7.1 Holomorphic solutions of the massless field	
equations	303
7.2 The linear Penrose transform	325
7.3 Integral formulas for massless fields	349
7.4 Hyperfunction solutions of the massless field	
equations	354
8 Self-dual gauge fields	371
8.1 Correspondence between self-dual gauge fields	
and holomorphic bundles	372
8.2 Ansätze for $SU(2)$ -fields	398
8.3 The twistor construction of instantons	410
8.4 Magnetic poles: solutions	422
9 Twistors for self-dual space-time	433
9.1 Correspondence between self-dual space-times	
and curved twistor spaces	434
9.2 Constructing self-dual space-times	440
10 The Penrose transform for general gauge fields	459
10.1 The Penrose transformation on formal neigh-	
borhoods of the space of null lines	460
10.2 Supergeometry and Yang-Mills fields	472
References	485
Subject and author index	504

Contents

viii