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Preface

As the title indicates, this book is an ex!
forms. What is a differential form? The aim of
that question.

To explain differential forms, we have to cor
tiable manifolds over which they are defined. Ir
manifold is a modern representation of a figu
ject, and is an important notion in modern m~
many textbooks on differentiable manifolds havi
reader may have seen or even already studied Sl
textbooks, without exception, differential forms
in many cases only the definition and the fundc
presented, while only a brief description is giver
to analyze the structure of the differentiable mal
so many fundamental facts already take up a l(

Now that the notion of differentiable mani
tablished, this situation is in a sense inevital
convenience arises. That is, the reader will 1
fundamental facts of differentiable manifolds,
little time for practical manifolds. Also, as a th
description is frequently not in the order of hi
the excitement of the discovery often gets lost.

Modern mathematics is now progressing d
etry a revolutionary change started in the 19
today with no sign of halting. In such an era
important to understand mathematics as a livin
for new advances, rather than as a completely 1

In this series there is no book entitled "!\'
be because the series editors took the above fa
desired to lead the readers to the scene of curren
research as quickly as possible.
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