Contents

Preface				<i>page</i> xiii
	wledg	ments		xvii
1	Intr	oductio	n: Qualitative description and	
T			ional experiments	1
	1.1		ative features of adiabatic shear bands	2
	1.1	-	Basic morphology	2
			Occurrence	7
			Importance	11
			Qualitative mechanics	14
			Reviews and symposiums on adiabatic shear	15
			Implications for computations	17
	12		limensional experiments	18
	1.2		Dynamic testing with uniform fields	19
			Formation of adiabatic shear bands in	
		11212	thin-walled tubes and other geometries	26
	1.3	Concl	uding remarks	34
2	Dal		ws and nonlinear elasticity: A brief summary	35
4	Dai 2.1		ce laws	36
	2.1		Balance of mass	37
			Balance of momentum	37
			Balance of angular momentum	38
E			Balance of energy	38
			The Clausius–Duhem inequality	39
		2.1.3	The Clausius–Duncin mequanty	•••
			ix	

Contents

	2.2	Therm	40	
		2.2.1	Objectivity and implications of the	
			Clausius–Duhem inequality	40
		2.2.2	Helmholz and Gibbs functions	42
		2.2.3	Specific heat, thermal stress, and thermal	
			expansion	44
3	The	rmopla	sticity	47
	3.1	Gener	al structure	50
		3.1.1	Kinematics	50
		3.1.2	Thermodynamic potentials	53
		3.1.3	Entropy and energy	55
	3.2	Yield,	plastic flow, and constitutive equations	58
		3.2.1	The intermediate configuration and the local	
			elastic reference configuration	58
		3.2.2	Elastically isotropic materials with scalar	
			internal variables only	60
		3.2.3	Plastic stretching in elastically isotropic	
			materials	62
		3.2.4	Plastic yield	64
			Constitutive laws for plastic flow	65
			Flow potentials	68
	3.3	One-dimensional forms		69
		3.3.1	Specializations and approximations	69
		3.3.2	Isotropic work hardening and the stored	
			energy of cold work: An example	73
4	Mo	dels for	thermoviscoplasticity	77
	4.1		hardening	78
			Work hardening without history effects	81
		4.1.2	- ·	81
		4.1.3	Thermodynamic consistency of cold work and	-
			work hardening	84
	4.2	Plasti	c flow: Simple phenomenological and	01
			cal models	85
		4.2.1	Power law model	86
			Litonski's model	87
		4.2.3	Johnson–Cook model	88
		4.2.4		89
		4.2.5	Bodner–Partom model	92

	Contents		xi
	4.2.6 MTS model		93
	4.2.7 Anand's model		95
4.3	Concluding remarks		96
One	e-dimensional problems, part I	: General	
	siderations		98
5.1	Homogeneous solutions and th	e reduction to	
	rigid-plastic material		98
	5.1.1 Initial boundary layer:	General description	99
	5.1.2 Initial boundary layer:	A simple example	100
5.2	Steady solutions		103
5.3	Change of type, regularization,	and embedded change	
	of type		106
5.4	Typical numerical results		108
One	e-dimensional problems, part I	I: Linearization and	
gro	wth of perturbations		115
6.1	Perturbations from homogeneous	ous solutions:	
	Linearized equations		116
	6.1.1 Frozen coefficients		116
	6.1.2 The initial-boundary va	lue problem for	
	perturbations		118
6.2	Quasi-static solutions for spec	ial cases on a	
	finite interval		122
	6.2.1 Perfect plasticity with	finite thermal	
	conductivity		122
	6.2.2 Work hardening without	it thermal conductivity:	
	The early response		124
	6.2.3 Work hardening without	ut thermal conductivity:	
	The response near peal		129
	6.2.4 Finite thermal conduct	ivity and work	
	hardening		131
	6.2.5 Discussion of quasi-sta		133
	6.2.6 Scaling laws and scaling		136
6.3		g and patterning	141
6.4	Concluding remarks		148
On	e-dimensional problems, part	III: Nonlinear	
sol	utions		150
7.1	Adiabatic cases; $k = 0$		150
	7.1.1 Stress boundary condi	tion	150

Contents

		7.1.2 Velocity boundary condition;		
		Wright (1990a,1990b)	151	
		7.1.3 Graphical interpretation of solutions	152	
	7.2		156	
		7.2.1 An exact solution	156	
		7.2.2 Approximate solution with no work		
		hardening	158	
		7.2.3 Further approximations and qualitative		
		interpretation	160	
	7.3	Multiple-length scales: Structure of a fully formed		
		band and the evolution of stress in a special case		
	7.4			
		general case	168	
	7.5	Thermal and mechanical length scales		
	7.6	DiLellio and Olmstead's theory of shear		
		band evolution	177	
	7.7	Concluding remarks	180	
8	Two	Two-dimensional experiments		
	8.1	Kalthoff's experiment	183	
		8.1.1 Stable-brittle-ductile behavior	184	
		8.1.2 Brittle behavior	185	
		8.1.3 Ductile behavior	187	
		8.1.4 Other results and discussion	187	
	8.2	Thick-walled torsion experiments		
	8.3	Collapse of a thick-walled cylinder	193	
9	Two-dimensional solutions		201	
	9.1	Mode III: Antiplane motion	202	
		9.1.1 Inertial solution	203	
		9.1.2 Core solution	208	
	9.2	Mode II: In-plane motion	211	
	9.3	The leading boundary layer	218	
	9.4	Summary	227	
Bibli	ograpl	'ny	229	
Index	c		239	