Contents

Li	ist of figures	ix
Li	ist of illustrations	xxi xxiii xxv xxix xxix
Li	ist of tables	
Pı	reface	
N	ote to readers	
N	omenclature	
A	brief history of turbomachinery	1
	Early turbomachinery	3
	Blowers and pumps	5
	Compressors	5
	Steam turbines	7
	Marine turbines	14
	Gas-turbine engines	15
	The turbojet	20
	The fallibility of experts' forecasts	24
	References	24
1		27
	1.1 Aims	27
	1.2 Definitions	28
	1.3 Comparison of gas turbines with other engines	35
	References	41
	Problems	42
2	Review of thermodynamics	45
	2.1 The first law of thermodynamics	45

vi			Cartanta
			Contents
	2.2	Examples of the use of the SFEE	54
	2.3	The second law of thermodynamics	55
	2.4	Examples of the use of the SFEE and the SFSE	65
	2.5	Compressible-flow functions for a perfect gas	69
	2.6	Turbomachine-efficiency definitions	75
	Refe	erences	88
	Proł	blems	88
3	The	rmodynamics of gas-turbine cycles	95
	3.1	Temperature-entropy diagrams	96
	3.2	Actual processes	97
	3.3	Choice of the pressure ratio for maximum power	97
	3.4	Choice of optimum pressure ratio for peak efficiency	101
	3.5	Cycle designation—fuller specification	102
	3.6	Cycle performance calculations	103
	3.7	Efficiency versus specific power for shaft-power engines	114
	3.8	Jet-propulsion cycles	133
	3.9	Performance characteristics of jet-propulsion cycles	138
	3.10	Descriptions and performance of alternative cycles	142
	Refe	erences	164
	Prot	olems	166
4	Diffusion and diffusers		173
	4.1	Diffusion in ducts	174
	4.2	Performance measures	179
	4.3	Theoretical pressure rise as a design guide	183
	4.4	Diffuser effectiveness	183
	4.5	Axial-diffuser performance data	187
	4.6	Radial-diffuser performance	1 9 9
	4.7	Draft tubes for hydraulic turbines	204
	4.8	The risk factor in diffuser design	207
	Refe	rences	208
	Prob	lems	209
5	Ene	rgy transfer in turbomachines	211
	5.1	Euler's equation	211
	5.2	Velocity diagrams and the parameters that describe them	216
	5.3	Axial-compressor and pump velocity diagrams	226
	5.4	Radial-turbomachine velocity diagrams	232
	5.5	Correlations of peak stage efficiency with radius ratio and "specific speed"	234
	5.6	Preliminary-design methods for radial-flow turbomachinery	236

Co	Contents	
	5.7 Choice of number of stages	249
	References	252
	Problems	252
6	Three-dimensional velocity diagrams for axial turbomachines	263
	6.1 The constant-work stage	264
	6.2 Conditions for radial equilibrium	264
	6.3 Use of the SRE equation for velocity distributions	266
	6.4 Prescribed reaction variation	268
	6.5 Advantageous values of the index n	272
	6.6 Practical considerations governing blade twist	273
	6.7 Streamline-curvature calculation methods	275
	References	279
	Problems	279
7	The design and performance prediction of axial-flow turbines	283
	7.1 The sequence of preliminary design	283
	7.2 Blade shape, spacing, and number	285
	7.3 More-detailed design sequence emphasizing aircraft engines	297
	7.4 Blade-surface curvature-distribution effects	302
	7.5 Prescribed-curvature turbine-blade design	308
	7.6 Stator-rotor interactions	317
	7.7 Performance (efficiency) prediction of axial turbine stages	322
	7.8 Treatment of air-cooled turbines	326
	7.9 Loss correlations	326
	7.10 Loss-coefficient data for axial-flow turbomachinery	328
	7.11 Turbine performance characteristics	334
	References	339
	Problems	340
8	The design and performance prediction of axial-flow compressor	rs 343
	8.1 Introduction	343
	8.2 Cascade tests	344
	8.3 The preliminary design of single-stage fans and compressors	355
	8.4 Prescribed-curvature compressor-blade design	357
	8.5 Performance prediction of axial-flow compressors	358
	8.6 The design and analysis of multi-stage axial compressors	369
ç	8.7 Compressor surge	373
	8.8 Axial-compressor stage stacking	374
	8.9 Alternative starting arrangements to reduce low-speed stalling	376
	8.10 Axial-radial compressors	378

<u>vi</u>		
	8.11 Transonic compressors and fans	270
	8.12 Improved compressor-blade geometries and flutter	379 381
	8.13 Axial-flow pump design	382
	References	
	Problems	388 389
9	Design methods for radial-flow turbomachines	395
	9.1 The difficulties of precise design	395
	9.2 Advantages and disadvantages and areas of application	396
	9.3 Design process for compressors, fans and pumps	407
	9.4 Design process for radial-inflow turbines	412
	9.5 Nozzles for radial-inflow turbines	423
	9.6 Performance characteristics for radial-flow turbomachines	424
	9.7 Alternative rotor configurations	424
	9.8 Blade shape	427
	9.9 Surge range	428
	9.10 Off-design performance prediction	429
	9.11 Design of centrifugal (radial-flow) pumps	429
	9.12 Cavitation and two-phase flow in pumps	430
	9.13 Cavitation performance loss	438
	9.14 Pump operation in two-phase flow	440
	9.15 Cryogenic pumps	444
	References	445
	Problems	446
10	0 Convective heat transfer in blade cooling and heat-exchanger de	esign 453
	10.1 Reynolds' analogy between fluid friction and heat transfer	454
	10.2 The N_{tu} method of heat-exchanger design	458
	10.3 Guidelines for choice of heat-exchanger passages	462
	10.4 Guidelines for heat-exchanger design	465
	10.5 Heat-exchanger design constraints for different configurations	472
	10.6 Regenerator design	473
	10.7 Turbine-blade cooling	490
	10.8 Heat transfer with mass transfer	498
	10.9 Internal-surface heat transfer	501
	References	504
	Problems	506
11	Gas-turbine starting and control-system principles	513
	11.1 Starting	513
	11.2 Ignition systems	519

List of figures	ix
11.3 Safety limits and control of running variables	521
References	523
12 Combustion systems and combustion calculations	525
12.1 Combustion-system types	527
12.2 Conservation laws for combustion	536
References	542
Problems	543
13 Mechanical-design considerations	545
13.1 Overall design choices	545
13.2 Material selection	553
13.3 Design with traditional materials	556
13.4 Engine examples	562
References	570
A Properties of air and combustion products	573
B Collected formulae	579
C Some constants	585
D Conversion factors	587