## CONTENTS*

Preface ..... XV
Chapter 1 Why Abstract Algebra? ..... 1
History of Algebra. New Algebras. Algebraic Structures. Axioms and Axiomatic Algebra. Abstraction in Algebra.
Chapter 2 Operations ..... 19
Operations on a Set. Properties of Operations.
Chapter 3 The Definition of Groups ..... 25
Groups. Examples of Infinite and Finite Groups. Examples of Abelian and Nonabelian Groups. Group Tables.
Theory of Coding: Maximum-Likelihood Decoding.
Chapter 4 Elementary Properties of Groups ..... 36
Uniqueness of Identity and Inverses. Properties of Inverses.
Direct Product of Groups.
Chapter 5 Subgroups ..... 44
Definition of Subgroup. Generators and Defining Relations.
Cayley Diagrams. Center of a Group. Group Codes; Hamming Code.

[^0]Chapter 6 Functions ..... 56
Injective, Surjective, Bijective Function. Composite and Inverse of Functions.
Finite-State Machines. Automata and Their Semigroups.
Chapter 7 Groups of Permutations ..... 69
Symmetric Groups. Dihedral Groups. An Application of Groups to Anthropology.
Chapter 8 Permutations of a Finite Set ..... 80
Decomposition of Permutations into Cycles. Transpositions. Even and Odd Permutations. Alternating Groups.
Chapter 9 Isomorphism ..... 90
The Concept of Isomorphism in Mathematics. Isomorphic and Nonisomorphic Groups. Cayley's Theorem.
Group Automorphisms.
Chapter 10 Order of Group Elements ..... 103
Powers/Multiples of Group Elements. Laws of Exponents. Properties of the Order of Group Elements.
Chapter 11 Cyclic Groups ..... 112
Finite and Infinite Cyclic Groups. Isomorphism of Cyclic Groups. Subgroups of Cyclic Groups.
Chapter 12 Partitions and Equivalence Relations ..... 119
Chapter 13 Counting Cosets ..... 126
Lagrange's Theorem and Elementary Consequences. Survey of Groups of Order $\leqslant 10$. Number of Conjugate Elements. Group Acting on a Set.
Chapter 14 Homomorphisms ..... 136
Elementary Properties of Homomorphisms. Normal Subgroups. Kernel and Range. Inner Direct Products. Conjugate Subgroups.
Chapter 15 Quotient Groups ..... 147
Quotient Group Construction. Examples and Applications.The Class Equation. Induction on the Order of a Group.
Chapter 16 The Fundamental Homomorphism Theorem ..... 157
Fundamental Homomorphism Theorem and SomeConsequences.
The Isomorphism Theorems. The Correspondence Theorem. Cauchy's Theorem. Sylow Subgroups. Sylow's Theorem. Decomposition Theorem for Finite Abelian Groups.
Chapter 17 Rings: Definitions and Elementary Properties ..... 169
Commutative Rings. Unity. Invertibles and Zero-Divisors. Integral Domain. Field.
Chapter 18 Ideals and Homomorphisms ..... 181
Chapter 19 Quotient Rings ..... 190
Construction of Quotient Rings. Examples. Fundamental Homomorphism Theorem and Some Consequences. Properties of Prime and Maximal Ideals.
Chapter 20 Integral Domains ..... 200
Characteristic of an Integral Domain. Properties of the Characteristic. Finite Fields. Construction of the Field of Quotients.
Chapter 21 The Integers ..... 208
Ordered Integral Domains. Well-ordering. Characterization of $\mathbb{Z}$ Up to Isomorphism. Mathematical Induction. Division Algorithm.
Chapter 22 Factoring into Primes ..... 217
Ideals of $\mathbb{Z}$. Properties of the GCD. Relatively Prime Integers. Primes. Euclid's Lemma. Unique Factorization.
Chapter 23 Elements of Number Theory (Optional) ..... 226Properties of Congruence. Theorems of Fermat andEuler. Solutions of Linear Congruences. ChineseRemainder Theorem.Wilson's Theorem and Consequences. Quadratic Residues.The Legendre Symbol. Primitive Roots.
Chapter 24 Rings of Polynomials ..... 240
Motivation and Definitions. Domain of Polynomials over a Field. Division Algorithm.
Polynomials in Several Variables. Fields of Polynomial Quotients.
Chapter 25 Factoring Polynomials ..... 251
Ideals of $F[x]$. Properties of the GCD. Irreducible Polynomials. Unique factorization.
Euclidean Algorithm.
Chapter 26 Substitution in Polynomials ..... 258
Roots and Factors. Polynomial Functions. Polynomials over ©Q. Eisenstein's Irreducibility Criterion. Polynomials over the Reals. Polynomial Interpolation.
Chapter 27 Extensions of Fields ..... 270
Algebraic and Transcendental Elements. The Minimum Polynomial. Basic Theorem on Field Extensions.
Chapter 28 Vector Spaces ..... 282
Elementary Properties of Vector Spaces. Linear Independence. Basis. Dimension. Linear Transformations.
Chapter 29 Degrees of Field Extensions ..... 292
Simple and Iterated Extensions. Degree of an Iterated Extension.
Fields of Algebraic Elements. Algebraic Numbers. Algebraic Closure.
Chapter 30 Ruler and Compass ..... 301
Constructible Points and Numbers. Impossible Constructions.
Constructible Angles and Polygons.
Chapter 31 Galois Theory: Preamble ..... 311
Multiple Roots. Root Field. Extension of a Field. Isomorphism.
Roots of Unity. Separable Polynomials. Normal Extensions.
Chapter 32 Galois Theory: The Heart of the Matter ..... 323
Field Automorphisms. The Galois Group. The Galois Correspondence. Fundamental Theorem of Galois Theory.
Computing Galois Groups.
Chapter 33 Solving Equations by Radicals ..... 334
Radical Extensions. Abelian Extensions. Solvable Groups. Insolvability of the Quintic.
Appendix A Review of Set Theory ..... 345
Appendix $B$ Review of the Integers ..... 349
Appendix C Review of Mathematical Induction Answers to Selected Exercises ..... 353
Index ..... 381


[^0]:    * Italic headings indicate topics discussed in the exercise sections.

