CONTENTS

CHAPTER ON	E Complex numbers	1
1.1.	Real numbers	1
1.2.	Complex numbers	1
1.3.	Complex numbers as marks in a plane	ر
1.4.	Complex numbers as vectors in a plane	3
1.5.	Addition and subtraction	0
1.6.	Multiplication and division	0
1.7.	Summary and notation	8 10
1.8.	Conjugate numbers	12
1.9.	Vectorial operations	15
1.10.	Limits	17
	Additional examples and comments on Chapter 1	20
	and comments on Chapter 1	23
CHAPTER TWO	Complex functions	35
2.1.	Extension to the complex domain	35
2.2.	Exponential function	36
2.3.	Trigonometric functions	38
2.4.	Consequences of Euler's theorem	41
2.5.	Further applications of Euler's theorem	43
2.6.	Logarithms	46
2.7.	Powers	49
2.8.	Inverse trigonometric functions	52
2.9.	General remarks	53
2.10.	Complex function of a real variable: kinematic	
	representation	55
2.11.	Real functions of a complex variable: graphical	
	representation	57
2.12.	Complex functions of a complex variable: graphical	• ·
:	representation on two planes	59

2.13.	Complex functions of a complex variable: physical	(1
	Additional examples and commonts on Chapter 2	61
	Additional examples and comments on Chapter 2	03
CHAPTER THI	REE Differentiation: analytic functions	75
3.1.	Derivatives	75
3.2.	Rules for differentiation	77
3.3.	Analytic condition for differentiability: the Cauchy-	
	Riemann equations	80
3.4.	Graphical interpretation of differentiability: con-	
	formal mapping	85
3.5.	Physical interpretation of differentiability: sourceless	
	and irrotational vector-fields	88
3.6.	Divergence and curl	91
3.7.	Laplace's equation	95
3.8.	Analytic functions	97
3.9.	Summary and outlook	98
	Additional examples and comments on Chapter 3	99
CHAPTER FOU	VR Conformal mapping by given functions	113
4.1.	The stereographic or Ptolemy projection	113
4.2.	Properties of the stereographic projection	117
4.3.	The bilinear transformation	120
4.4.	Properties of the bilinear transformation	122
4.5.	The transformation $w = z^2$	128
4.6.	The transformation $w = e^z$	129
4.7.	The Mercator map	131
	Additional examples and comments on Chapter 4	132
CHAPTER FIV	E Integration: Cauchy's theorem	143
5.1.	Work and flux	143
5.2.	The main theorem	146
5.3.	Complex line integrals	147
5.4.	Rules for integration	152
5.5.	The divergence theorem	155
5.6.	A more formal proof of Cauchy's theorem	157
5.7.	Other forms of Cauchy's theorem	158
5.8 .	The indefinite integral in the complex domain	162
5.9.	Geometric language	167
	Additional examples and comments on Chapter 5	169

CHAPTER SIX	Cauchy's integral formula and applications	177
6.1.	Cauchy's integral formula	177
6.2.	A first application to the evaluation of definite integrals	180
6.3.	Some consequences of the Cauchy formula: higher derivatives	184
6.4.	More consequences of the Cauchy formula: the	101
65	principle of maximum modulus	187
0.3.	Laurent's theorem	100
6.7.	Singularities of analytic functions	202
6.8.	The residue theorem	202
6.9.	Computation of residues	208
6.10.	Evaluation of definite integrals	210
	Additional examples and comments on Chapter 6	219
CHAPTER SEV	EN Conformal mapping and analytic continuation	231
7.1.	Analytic continuation	231
7.2.	The gamma function	235
7.3.	Schwarz' reflection principle	240
7.4.	The general mapping problem: Riemann's mapping	
	Theorem	243
7.5.	The Schwarz-Christoffel mapping	245
/.0.	A discussion of the Schwarz-Christollel formula	201
/./.	Additional examples and comments on Chapter 7	255 260
CHAPTER FIC	HT Hydrodynamics	265
CHAITER LIG		205
8.1.	The equations of hydrodynamics	265
8.2.	The complex potential	267
8.3.	Flow in channels: sources, sinks, and dipoles	270
8.4.	Flow in channels: conformal mapping	272
8.5.	Flows past fixed bodies	278
8.6.	Flows with free boundaries	282
CHAPTER NIN	E Asymptotic expansions	291
9.1.	Asymptotic series	291
9.2.	Notation and definitions	294
	Contents	xiii

9.3.	Manipulating asymptotic series	296
9.4.	Laplace's asymptotic formula	302
9.5.	Perron's extension of Laplace's formula	307
9.6.	The saddle-point method	314
	Additional examples and comments on Chapter 9	322

Index

325