Table of Contents

1 Quasar Lensing

t

Frederic Courbin, Prasenjit Saha, Paul L. Schechter	1
1.1 Concepts	1
1.1.1 The Formation of Multiple Images	1
Wavefronts	1
Arrival Times.	2
Some Scales	3
The Arrival-Time Surface	4
Images and Magnification	5
Saddle-Point Contours, Critical Curves, Caustics	6
1.1.2 An Illustrative Macro-model	8
1.1.3 Lenses Within Lenses: Microlensing	12
Random Star Fields	12
Mandatory Microlensing.	13
Static and Kinetic Microlensing	14
Microlensing Caustics.	14
Quantitative Microlensing	16
1.1.4 The Effect of Cosmology	16
1.1.5 Degeneracies	16
1.2 Observations	19
1.2.1 Historical Background	19
1.2.2 Observational Constraints in Quasar Lensing	21
The Image Configuration and the Time Delay:	21
Distances to the Source and Lens.	23
The Quasar Host Galaxy and Background Objects.	24
Intervening Clusters/Groups.	25
1.2.3 Microlensing of the Quasar Images	26
1.3 Models	31
1.3.1 Parameterized Models	32
Some Simple Models.	32
Useful Approximations and Rules of Thumb	35
Fitting Models.	36
What Constitutes "Good Enough"?	37
The Central Concentration Degeneracy.	37
A Proposed "Standard" Model for Lenses.	38

1.3.2 Free-Form Models	40
Four Well-Known Systems.	42
Ring and Arcs	45
Combined h Results	45
1.4 Summary and Future Prospects	46
1.5 Inventory of Known Systems	47
References	51

2 Weak Lensing

David Wittman	55
2.1 Introduction	55
2.1.1 Motivation	55
2.1.2 Basics	56
2.1.3 Cosmology Dependence	59
2.1.4 Applicability of Weak Lensing	59
Weak Lensing Approximation.	59
Mass Sheet Degeneracy.	59
Angular Resolution.	61
Source Redshift Distribution.	62
Intrinsic Alignments	63
2.1.5 Measuring Shear	66
PSF Anisotropy.	66
PSF Broadening	67
Source Selection.	69
Sanity Checks.	69
2.2 Lensing by Clusters and Groups	69
2.2.1 Masses and Profiles	70
2.2.2 Two-Dimensional Structure	74
2.2.3 Mass and Light	76
2.2.4 Clusters as Cosmological Probes	78
2.2.5 Shear-Selected Clusters	79
2.2.6 Tomography with Clusters	82
2.3 Large-Scale Structure	84
2.3.1 Cosmic Shear Estimators	85
Mean Shear.	85
Shear Variance.	86
Ellipticity Correlations.	86
Aperture Mass.	87
Other Estimators.	$\frac{3}{87}$
2.3.2 Observational Status	$\frac{3}{87}$
2.4 Future Prospects.	$\frac{3}{89}$
2.4.1 New Applications	89
2.4.2 New Instruments	<u>90</u>
2.4.3 New Algorithms	91
References	$\frac{1}{92}$

3 Gravitational Optics Studies of Dark Matter Halos	
Tereasa G. Brainerd, Roger D. Blandford	. 96
3.1 Introduction	. 96
3.2 Galaxies as Weak Lenses	. 97
3.3 Strategies for Detecting Galaxy–Galaxy Lensing	. 100
3.3.1 Direct Averaging	. 100
3.3.2 Maximum Likelihood	. 101
3.4 Detections of Galaxy–Galaxy Lensing	. 102
3.4.1 Halo Model	. 103
3.5 Applications of Galaxy–Galaxy Lensing	. 104
3.5.1 Flattened Galaxy Halos	. 106
3.5.2 Galaxy–Galaxy Lensing Through Clusters	. 113
3.5.3 Morphological Dependence of the Halo Potential	. 114
3.5.4 Bias Factor	. 115
3.5.5 Lensing of Halos	. 116
3.6 Intrinsic Galaxy Alignment	. 120
3.7 Conclusions	. 120
References	. 122
4 Gravitational Lensing at Millimeter Wavelengths	104
Tommy Wiklind, Danielle Alloin	104
4.1 Introduction	196
4.2 Molecular Emission	196
4.2.1 Low- and Intermediate Redshift Galaxies	190
4.2.2 High Redshift Galaxies	199
4.3 Molecular Absorption Lines	199
4.3.1 Detectability	124
4.3.2 Observables	194
Deptical Depth.	195
Excitation Temperature and Column Density	195
4.3.3 Known Molecular Absorption Line Systems	197
Absorption in the Host Galaxy.	197
D 0010 + 257	190
B 0218+357	140
PKS 1830-211.	140
4.4 Dust Continuum Emission	140
4.4.1 Dust Emission	141
The Infrared Luminosity.	141
The Dust Mass.	142
4.4.2 Detectability of Dust Emission	145
4.4.3 Submillimeter Source Counts	140
4.4.4 Submm Source Identification and Redshift Distribution	148
4.4.5 Differential Magnification	148
Effect on Number Counts of submm/mm Detected Galaxies	151
4.5 Uase Studies	101
4.5.1 APM 08279+5255: A Case of Differential Magnification?	191

Modeling the Lens APM 08279+5255
4.5.2 The Cloverleaf: Another Case of Differential Magnification 157
The Lensing System
The IRAM Millimeter Data Sets
Comparing Images in the UV and the Millimeter Range
Derived Properties of the Molecular Torus in the Cloverleaf BAL
Quasar at $z = 2.558$
4.5.3 PKS 1830-211: Time Delay and the Hubble Constant 161
Time Delay Measurements Using Molecular Absorption Lines 162
Monitoring of HCO ⁺ (2-1)
Monitoring Results
Data Analysis
χ^2 Minimization :
Cross Correlation:
Minimum Dispersion (The Pelt Method):
Error Analysis:
4.6 Lens' Models for PKS 1830-211 169
4.6.1 Early Models
4.6.2 A New Lens Model of PKS 1830-211 173
4.7 Future Prospects
4.7.1 Future Instruments
Single Dish Telescopes 179
The Atacama Large Millimeter Array
4.7.2 Weak Lensing at Submillimeter Wavelengths
4.8 Summary
References
Subject Index