Índice

Prologo: 100 años de relatividad	9
1. Leyes y experimentos	11
Newton, el espacio y el tiempo	11
Leyes físicas y experimentos	13
Geometría y experimentos	17
2. Luz y éter	
Un punto crucial: la velocidad de la luz	20
Sistemas de referencie and a la l	20
Sistemas de referencia, velocidad total y de arrastre	24
El experimento de Michelson y Morley (o la muerte	
del éter)	26
La manera correcta de sumar velocidades	28
3. Las ideas básicas	30
Los postulados de la Relatividad Especial	31
El principio de relatividad	31
La velocidad de la luz es absoluta	33
El principio de equivalencia: "la idea más feliz	
de mi vida"	3/
¿Son "sagrados" estos principios?	34
4. Espacio y tiempo son relativos	39
El movimiento dilata el paso del tiempo	39
Los muones viven más cuando se mueven	42
El movimiento contrae las longitudes	43
La simultaneidad es relativa (la causalidad no)	45
Gravitación y tiempo	47
El tiempo pasa más lento cerca de un objeto masivo	47
Relojes voladores: el experimento de los aviones	50
La relatividad y el Sistema de Posicionamiento	
Global (GPS)	54
Paradojas relativistas	54

5. La fórmula más famosa	58
Modificando la ley de Newton	58
Masa y energía son equivalentes	62
La fórmula más famosa	62
Reacciones nucleares	
Antimateria	
6. Espacio-tiempo curvo	69
Líneas rectas y geodésicas	
La materia curva el espacio-tiempo	
La trayectoria de Mercurio: primer gran éxito	
de la teoría	78
¿Es la Relatividad General la única alternativa?	
7. Espejismos astronómicos	8
Desviación de la luz que pasa cerca del Sol	
Lentes gravitacionales	
Lentes gravitacionales como herramientas	
astronómicas	89
Balanzas para estimar la cantidad de materia oscura	
en las galaxias	90
Lentes de aumento	9
Relojes para medir la expansión del Universo	9
Microlentes para descubrir objetos compactos	92
8. Agujeros negros	94
Velocidad de escape y estrellas negras	
El horizonte	
Agujeros negros: ¿ciencia o ficción?	
¿Cómo ver un agujero negro?	
Agujeros negros en estrellas binarias	
Un agujero negro supermasivo en el centro	
de la Vía Láctea	101
Viaje al centro de un agujero negro	103
Evaporación de agujeros negros	105
La singularidad	107
9. Ondas gravitacionales	109
Relatividad versus acción instantánea a distancia	
¿Cómo detectar una onda gravitacional?	110
Las ondas gravitacionales son muy débiles	111
Un reloi astronómico que emite ondas gravitacionales	

₹

Detectores de ondas gravitacionales	117
Detectores kilométricos (o el retorno de Michelson)	
Buscando patrones	
Fuentes periódicas	121
Espiral final de estrellas binarias	121
Destellos	122
Fondo estocástico	
Una nueva ventana para asomarse al Universo	124
10. La constante cosmológica	125
La Gran Explosión	125
El Universo se expande	126
Nucleosíntesis	127
La radiación cósmica de fondo	128
¿La expansión será eterna?	129
Distancias extragalácticas	130
¿Expansión o contracción?	131
El espacio tridimensional es (casi) plano	132
¿Dónde está la materia?	134
La energía oscura	134
Epílogo: 100 años no es nada	137
Sobre los autores	139