Contents

	Preface to the Second Edition	
	Preface to the First Edition	Xi
	Acknowledgements	Xiii
1		xiv 1
1.1	Black body radiation	-
1.2		2
1.3	The Compton effect	12 16
1.4	Atomic spectra and the Bohr model of the hydrogen atom	19
1.5	The Stern-Gerlach experiment. Angular momentum and spin	33
1.6	De Broglie's hypothesis. Wave properties of matter and the genesis of quantum mechanics	
	Problems	38
2	The wave function and the uncertainty principle	45
2.1	Wave-particle duality	51
2.2	The interpretation of the wave function	52
2.3		56
2.4	Wave functions for particles having a definite momentum Wave packets	58
2.5		60
	The Heisenberg uncertainty principle Problems	69
3		76
and the contract	The Schrödinger equation	81
3.1	The time-dependent Schrödinger equation	82
3.2	Conservation of probability	86
3.3	Expectation values and operators	90
3.4	Transition from quantum mechanics to classical mechanics. The Ehrenfest theorem	97
3.5	The time-independent Schrödinger equation. Stationary states	100
3.6	Energy quantisation	104
3.7	Properties of the energy eigenfunctions	115

- 3.8 General solution of the time-dependent Schrödinger equation for a time-independent potential
- 3.9 The Schrödinger equation in momentum space Problems
- 4 One-dimensional examples
 - 4.1 General formulae
 - 4.2 The free particle
 - 4.3 The potential step
 - 4.4 The potential barrier
 - 4.5 The infinite square well
 - 4.6 The square well
 - 4.7 The linear harmonic oscillator
 - 4.8 The periodic potential Problems
- 5 The formalism of quantum mechanics
- 5.1 The state of a system
- 5.2 Dynamical variables and operators
- 5.3 Expansions in eigenfunctions
- 5.4 Commuting observables, compatibility and the Heisenberg uncertainty relations
- 5.5 Unitary transformations
- 5.6 Matrix representations of wave functions and operators
- 5.7 The Schrödinger equation and the time evolution of a system
- 5.8 The Schrödinger and Heisenberg pictures
- 5.9 Path integrals
- 5.10 Symmetry principles and conservation laws
- 5.11 The classical limit Problems
- 6 Angular momentum
- 6.1 Orbital angular momentum
- 6.2 Orbital angular momentum and spatial rotations
- 6.3 The eigenvalues and eigenfunctions of L^2 and L_z
- 6.4 Particle on a sphere and the rigid rotator
- 6.5 General angular momentum. The spectrum of J^2 and J_z

	6.	6 Matrix representations of angular momentum operators	
	6.	7 Spin angular momentum	
	6.	8 Spin one-half	
	6.	9 Total angular momentum	
	6.1		
		Problems	
	;	The Schrödinger equation in three dimensions	
	7.1	Separation of the Schrödinger equation in Cartesian coordinates	•
	7.2	Central potentials. Separation of the Schrödinger equation in spherical polar coordinates	
	7.3	The free particle	
	7.4	The three-dimensional square well potential	
	7.5	The hydrogenic atom	
	7.6	The three-dimensional isotropic oscillator	
Na sana sa		Problems	,
k,	8	Approximation methods for stationary problems	3
	8.1	Time-independent perturbation theory for a non-degenerate energy level	3
× •	8.2	Time-independent perturbation theory for a degenerate energy level	3
	8.3		3
	8.4	The variational method	3
	0.4	The WKB approximation Problems	4
	9		4
8 99	1000-4-0027, A-98, 17,00	Approximation methods for time-dependent problems	43
	9.1 9.2	Time-dependent perturbation theory. General features	4;
	9.2 9.3	Time-independent perturbation	4:
	9.4	Periodic perturbation	44
	9.5	The adiabatic approximation	44
	2.0	The sudden approximation Problems	45
	10		46
i i	10.1	Several- and many-particle systems	46
•	10.1	Introduction Systems of identity is a state	46
	10.2	Systems of identical particles	47
		Spin-1/2 particles in a box. The Fermi gas	47

• 4 È.

10.4 Two-electron atoms10.5 Many-electron atoms

10.6	Molecules	
10.7	Nuclear systems	
	Problems	
11	The interaction of quantum systems with radiation	5
11.1	The electromagnetic field and its interaction with one-electron atoms	
11. 2	Perturbation theory for harmonic perturbations and transition rates	
11.3	Spontaneous emission	
11.4	Selection rules for electric dipole transitions	
11.5	Lifetimes, line intensities, widths and shapes	
11.6	The spin of the photon and helicity	
11.7	Photoionisation	
11.8	Photodisintegration	
	Problems	;
12	The interaction of quantum systems with external electric and magnetic fields	5
12.1	The Stark effect	į
12.2	Interaction of particles with magnetic fields	į
12.3	One-electron atoms in external magnetic fields	Į
12.4	Magnetic resonance	Į
	Problems	į
13	Quantum collision theory	5
13.1	Scattering experiments and cross-sections	ę
13.2	Potential scattering. General features	Ę
13.3	The method of partial waves	Ę
13.4	Applications of the partial-wave method	Ę
13.5	The integral equation of potential scattering	e
13.6	The Born approximation	e
13.7	Collisions between identical particles	e
13.8	Collisions involving composite systems	6
	Problems	e

14 Quantum statistics

- 14.1 The density matrix
- 14.2 The density matrix for a spin-1/2 system. Polarisation
- 14.3 The equation of motion of the density matrix
- 14.4 Quantum mechanical ensembles
- 14.5 Applications to single-particle systems
- 14.6 Systems of non-interacting particles
- 14.7 The photon gas and Planck's law
- 14.8 The ideal gas Problems
- 15 Relativistic quantum mechanics
 - 15.1 The Klein–Gordon equation
 - 15.2 The Dirac equation
 - 15.3 Covariant formulation of the Dirac theory
 - 15.4 Plane wave solutions of the Dirac equation
 - 15.5 Solutions of the Dirac equation for a central potential
 - 15.6 Non-relativistic limit of the Dirac equation
 - 15.7 Negative-energy states. Hole theory Problems
- 16 Further applications of quantum mechanics
 - 16.1 The van der Waals interaction
 - 16.2 Electrons in solids
 - 16.3 Masers and lasers
 - 16.4 The decay of K-mesons
 - 16.5 Positronium and charmonium
- 17 Measurement and interpretation
 - 17.1 Hidden variables?
- 17.2 The Einstein–Podolsky–Rosen paradox
- 17.3 Bell's theorem
- 17.4 The problem of measurement
- 17.5 Time evolution of a system. Discrete or continuous?
- A Fourier integrals and the Dirac delta function
- A.1 Fourier series

В

A.2 Fourier transforms WKB connection formulae References Table of fundamental constants Table of conversion factors Index