CONTENTS

logue	ix
apter I. Simple Growth of Populations and Individuals	1
1.1. Population Growth	1
1.2. Multiple-Species Communities	5
1.3. Individual Growth	7
1.4. Multidimensional Growth in Individuals	9
1.5. A Plant Considered as a Population	11
1.6. A Simple Model of Tannin Production in a Plant	14
1.7. Volterra's Production Variable	10
Chapter Summary	10
apter II. Competitive Interactions Between Two Species	21
2.1. Gause-Witt Competition	21
2.2. Hutchinson's Competition with Social Effects	28
Chapter Summary	32
apter III. Medawar's Growth Energy and Optimal Production	35
3.1. Gompertz Growth and Medawar's Energy of Growth	35
3.2. The Calculus of Variations and Optimal Production	36
3.3. Laird's Law, The Principle of Maupertuis and	
Medawar's Energy	40
Chapter Summary	55
napter IV. Predation and Herbivory on Optimally Producing	
Terrestrial and Marine Ecosystems	57
4.1. The Crown-of-Thorns Starfish Predation on G.B.R.	57
4.2. Optimal Defense Theory of Rhoades	62
4.3. Chemical Interactions Between Soft and Hard Corals –	
The Biology	68
4.4. Introduction to the Model Description of a Viable	-
Community	71
4.5. Predictions on the Model	(8) 00
Chapter Summary	82
apter V. The Differential Geometry of Production Stability	85
5.1. Quadratic Maupertuis Energy	85
5.2. Non-Quadratic Maupertuis Energy	97
Chapter Summary	109

Chapter VI. A Dynamical Theory of Heterochrony: Time-Sequencing Changes in Ecology, Evolution and Development

1

- 6.1. Křivan's Growth Rate Transformation Defined by Ecological Constraints
- 6.2. Constraints on Production and the Projective Geometry of Sprays. The Adaptation Theorem
- 6.3. Division of Labour in Colonial Animals. Wilson's Ergonomics and Allometric Space
- 6.4. Social Interactions, Curvature and Complexity. Kwang Jeon's Experiment
- 6.5. Heterochrony and Environment in the Evolution of a Colonial Individual
- 6.6. Allometric Space and Wagner Geometry
- 6.7. Allometric Growth and Heterochrony in Paleontology
- 6.8. Remarks on the Dissociation of Growth, Maturation and Development in Ontogeny

6.9. Progenesis and Myxomatosis, The Wild Rabbit Disease Chapter Summary

Appendix A: On the Fundamental Lemma of Variational Calculus

Appendix B: Fuzzy Differential Inclusions as Substitutes for Stochastic Differential Equations in Population Biology

- 1. Introduction
- 2. Fuzzy Differential Inclusions
- 3. An Example of Non-Riemannian Type
- 4. Targeting Growth in the Presence of Noise
- 5. Final Remarks

References

Appendix C: Normal Coordinates and Log-Biomass

References

Some Frequently Used Formulas

Index

xxiv