

хi

Preface

First Thoughts on Equilibria and Stability			
1.	Simple Dynamic Models		
1.1.	, ,		
	Models based on Newton's equations.	3	
1.2.	What Comes Out Is What Goes In		
	Models involving conservation of mass.	7	
1.3.	Dynamical Systems		
	Background information on differential equation models.	10	
1.4.	Exercises	12	
2.	Ordinary Differential Equations		
2.1.	First-Order Equations (the Case $k = 1$)	16	
2.2.	The Case $k=2$	19	
2.3.	The Case $k = 3$	25	
2.4.	Exercises	26	
3.	Stability of Dynamic Models		
	owning of Dynamic models		
3.1.	Intuitive background		
	Nullclines and heuristics.	29	

Part 1

viii	Contents
VIII	CONTRACTOR

3.2.	Linearization	
	Behavior of systems about their equilibria, with applications.	31
3.3.	Liapunov's theorem, with applications.	43
3.4.	Feedback	
	Controlling unstable equilibria by feedback; the inverted	
25	pendulum. Exercises	46 51
3.5.	Exercises	31
4.	There Is a Better Way	
4.1.	Conditions Necessary for Optimality The maximum principle with application to the inverted	
4.3	pendulum.	55
4.2.	Bang-Bang Controls A class of optimal control problems, with applications.	61
4.3.	Exercises	68
A S	summary of Part 1	71
	Part 2	
	Further Thoughts and Extensions	
5.	Further Thoughts and Extensions Motion in Time and Space	
5 . 5.1.	•	
	Motion in Time and Space Conservation of Mass, II Derivation of a basic partial differential equation modeling the	
	Motion in Time and Space Conservation of Mass, II Derivation of a basic partial differential equation modeling the flow of a substance in a single spatial dimension over time.	-
5.1.	Motion in Time and Space Conservation of Mass, II Derivation of a basic partial differential equation modeling the flow of a substance in a single spatial dimension over time. Applications in the next four sections.	75
	Motion in Time and Space Conservation of Mass, II Derivation of a basic partial differential equation modeling the flow of a substance in a single spatial dimension over time. Applications in the next four sections. Algae Blooms	75
5.1.	Motion in Time and Space Conservation of Mass, II Derivation of a basic partial differential equation modeling the flow of a substance in a single spatial dimension over time. Applications in the next four sections.	75
5.1.	Motion in Time and Space Conservation of Mass, II Derivation of a basic partial differential equation modeling the flow of a substance in a single spatial dimension over time. Applications in the next four sections. Algae Blooms A model for the growth of algae. The minimum spatial dimension necessary to maintain a sustained population is obtained by separation of variables. Boundary conditions. The	,,
5.1.5.2.	Motion in Time and Space Conservation of Mass, II Derivation of a basic partial differential equation modeling the flow of a substance in a single spatial dimension over time. Applications in the next four sections. Algae Blooms A model for the growth of algae. The minimum spatial dimension necessary to maintain a sustained population is obtained by separation of variables. Boundary conditions. The use of phase plane methods.	75 78
5.1.	Motion in Time and Space Conservation of Mass, II Derivation of a basic partial differential equation modeling the flow of a substance in a single spatial dimension over time. Applications in the next four sections. Algae Blooms A model for the growth of algae. The minimum spatial dimension necessary to maintain a sustained population is obtained by separation of variables. Boundary conditions. The use of phase plane methods. Pollution in Rivers	,,
5.1.5.2.	Motion in Time and Space Conservation of Mass, II Derivation of a basic partial differential equation modeling the flow of a substance in a single spatial dimension over time. Applications in the next four sections. Algae Blooms A model for the growth of algae. The minimum spatial dimension necessary to maintain a sustained population is obtained by separation of variables. Boundary conditions. The use of phase plane methods. Pollution in Rivers Coupled linear equations for oxygen depletion in a river due	,,
5.1.5.2.	Motion in Time and Space Conservation of Mass, II Derivation of a basic partial differential equation modeling the flow of a substance in a single spatial dimension over time. Applications in the next four sections. Algae Blooms A model for the growth of algae. The minimum spatial dimension necessary to maintain a sustained population is obtained by separation of variables. Boundary conditions. The use of phase plane methods. Pollution in Rivers	78
5.1.5.2.5.3.	Motion in Time and Space Conservation of Mass, II Derivation of a basic partial differential equation modeling the flow of a substance in a single spatial dimension over time. Applications in the next four sections. Algae Blooms A model for the growth of algae. The minimum spatial dimension necessary to maintain a sustained population is obtained by separation of variables. Boundary conditions. The use of phase plane methods. Pollution in Rivers Coupled linear equations for oxygen depletion in a river due to pollutants. Steady state solutions. Traveling wave solutions. Highway Traffic A model for the flow of traffic along a highway. An introduction	78
5.1.5.2.5.3.	Motion in Time and Space Conservation of Mass, II Derivation of a basic partial differential equation modeling the flow of a substance in a single spatial dimension over time. Applications in the next four sections. Algae Blooms A model for the growth of algae. The minimum spatial dimension necessary to maintain a sustained population is obtained by separation of variables. Boundary conditions. The use of phase plane methods. Pollution in Rivers Coupled linear equations for oxygen depletion in a river due to pollutants. Steady state solutions. Traveling wave solutions. Highway Traffic	78

	Contents	ix
5.5.	A Digression on Traveling Waves	98
	Comments on traveling wave solutions to Fisher's equation.	90
5.6.	Morphogenesis	
	A reaction—diffusion model for morphogenesis. A uniform	
	equilibrium distribution of the cells can become unstable	
	thereby leading to a spatially nonhomogeneous pattern. A similar model is discussed that suggests patchy growth of algae	
		101
E 7	in an ocean. Tidal Dynamics	101
5.7.	The movement of water in estuaries and canals due to ocean	
	tides leads to a pair of nonlinear equations via the principle of	
	conservation of momentum. Traveling wave solutions.	111
5.8.	Exercises	116
5.0.	EACTCISCS	
6.	Cycles and Bifurcation	
	Self-Sustained Oscillations	
6.1.	The spring–mass system of 1.1 is re-examined under Coulomb	
	damping on a moving surface. This leads to limit cycles in a	
	model of a bow moving across a violin string or a brake pad	
	against a moving wheel rim.	121
6.2.	When Do Limit Cycles Exist?	
V.Z.	Positive limiting sets of an orbit. Statement and explanation	
	of Poincaré–Bendixson theorem (no proof). Simple examples	
	lead to the bifurcation of an orbit from a stable equilibrium to	
	a stable cycle. A heuristic proof is given of the Hopf bifurcation	
	theorem in the plane.	126
6.3.	•	
	A more general model of predation, which includes satiation	
	and a model of harvesting fish stocks. Both models lead to	
	limit cycles.	137
6.4.	The Flywheel Governor	
	Formulation of our first model with three equations, the Watt	
	governor. When the equilibrium is unstable, a limit cycle	
	develops as a Hopf bifurcation.	143
6.5.	Exercises	148
7.	Bifurcation and Catastrophe	

In some models, certain variables undergo rapid change as certain other parameters vary slowly. We consider one or two

7.1. Fast and Slow

X Contents

	parameters. Potential functions and gradient systems. Heuristic treatment (no proof) of Thom's theorem on fold and cusp	
	catastrophes. Relation to bifurcation. The idea of resilience	
	Applications in the next three sections.	153
7.2.	The Pumping Heart	100
7.3.	The Zeeman model of the heart is formulated as a function of stimulus and tension. Insects and Trees	162
7.4.	The Holling-Ludwig-Jones model of budworm infestation of spruce forests as a function of branch size and foliage	169
7.5.	A modified Bullard model of the earth's magnetic field, leading to field reversals.	176
7.5.	Exercises Including a model of algae bloom as a function of nutrient level and tidal flow.	181
8.	Chaos	
8.1. 8.2.	Not All Attractors Are Limit Cycles or Equilibria We begin our study of models that display erratic behavior with the Leonard-May model of competition between three groups of participants. Strange Attractors	185
8.3.	The chaotic behavior of a modified version of the geomagnetic equations. Deterministic or Random?	191
8.4.	The discrete logistic equation displays apparently random behavior. This is explained on the basis of symbolic dynamics. Exercises	195 204
Ref	erences and a Guide to Further Readings	207
	Ordinary Differential Equations	
	Introductions to Differential Equation Modeling	207
	More Advanced Modeling Books	208
	Hard to Classify	209
	•	209
Notes on the Individual Chapters		
Index		217