Contents

s

g

CHAPTER 1 THE CONNECTION BETWEEN BIOLOGY AND PHYSICS	1
1. The Difference between Living Organisms and Inanimate Matter	1
 The Possibility of giving a Molecular Description to Biological Phenomena 	3
CHAPTER 2 INTERACTIONS BETWEEN ATOMS IN MOLECULES AND BETWEEN MOLECULES THEMSELVES	9
3. The Chemical Units of Life	9
4. The Electronic Structure of the Main Atoms of Biomolecules	10
 Interaction between Atoms 5.1. Localised Chemical Bonds 5.2. Incomplete Localisation of Chemical Bonds 	14 14 21
 6. Interaction between Molecules 6.1. Dispersion or van der Waal's Forces 6.2. Hydrogen Bonds between Molecules 	23 23 25
7. The Interaction of Ions and Molecules with Water 7.1. The Hydration of Ions in Water 7.2. Hydrophobic and Hydrophilic Interactions	30 30 33
CHAPTER 3 PROTEINS AND THEIR BIOLOGICAL FUNCTIONS	37
 8. Protein Structure 8.1. Amino Acids 8.2. The Primary Structure of Proteins 8.3. The Secondary and Higher Order Structures of Protein Molecules 	38 38 42 44
 Some Biological Functions of Proteins 9.1. Proteins which Store and Transport Oxygen 9.2. Biocatalysts - Enzymes 9.3. Allosteric Enzymes. Cooperative Behaviour 9.4. The Control of Biochemical Reactions 	48 48 53 58 61
10. Enzymes with a Known Spatial Structure 10.1. Lysozyme 10.2. The Family of Enzymes which Break Down Proteins	64 64 66

vii

Contents		Contents
Contents	7.2	20. Modern Ideas on the Mechanism of Muscle Contra
CELL MEMBRANES		20.1. The Sliding Filament Model
Surface of the Cell	73	20.2. Phenomenological Theories for the Mechanism
Recognition of Cells by One Another	75	of Striated Muscles
	76	20.3. The Molecular Theory of Muscular Contractio
mposition and Structure of Cell Memorales	80	31 The Contractile Systems in Nonskeletal Muscles
Inner Membrane Proteins	81	21. The contractile systems in Nonskeletar Masters
Dynamic Models for Cell Membranes	82	21.1. The synchronous Flight Muscles in Insects
Cooperative Phenomena in Memoranes		21.2. Asynchronous Fright Muscles in Insects
ssive Transport of Ions and Molecules Across Membranes	83	21.5. Movement with the help of cirra and radyou
Transport of Molecules and Ions Across Membranes Separating		21.4. Spectatised Muscre ceris
Electrolytes	84	CURPTER 7 THE MICRATION OF ENERGY AND ELECTRONS IN P
Passive Transport with the Participation of Carriers	86	CHAPTER / THE MIGRATION OF ENERGY MUD EDUCTIONS IN 2
The Molecular Mechanism for the Membrane Activity of		22. The Migration of Energy in One-Dimensional Mol
Valinomycin	90	22.1. Excitons in Periodic One-Dimensional Molecu
The Transmembrane Potential Difference	92	22.2. Solitons in ordered One-Dimensional Molecul
read Transport of Molecules and Ions Across Biological		22.3. Comparison of the Properties of Solitons an
mbranes	94	22.4. Solitons in «-Spiral Protein Molecules
	94	23 The Transport of Electrons in Biological Syste
The Provided State of the Membrane	98	23.1 Tunnelling Transfer of Electrons
The Energised State of the Membrane	100	23.2 The Bole of Proteins in the Process of Fler
Oxidative PhosphoryLation	102	23.2. The Role of Floteins in the Flotess of Miec
Active fransport in the memorane of Successa		23.3 The Basic Equations Defining the Motion of
	105	a Quasi-One-Dimensional Molecular Chain
) DIOEMEROBIICO	105	23.4. Continuum Approximation
tabolic Reactions in the Cell	105	23.4. Concindum Approximación
The ATP Molecule as a Universal Accumulator of Energy in the	110	Bibliography
Cell		
itochondria - The Energy Factories of the Cell	113	Index
, The Electron Transport Chain in Mitochondria	115	
, Hypotheses on the Mechanism of Phosphorylation in the Inner		Other Titles in the Series
Membranes of Mitochondria	121 ,	ч.
. The Chemiosmotic Hypothesis on the Coupling between the	100	
Processes of Respiration and Phosphorylation	123 -	
e Photosynthesis Mechanism	127	
Chlorophyll and other Light-Sensitive Pigments	130	
Photosynthesising Centres in Chloroplasts	134	
Photosynthesising Systems of Bacteria and Blue-Green Algae	135	
Two Photosynthesising Systems in Plants	138	
Counling Mechanism between Light-Elicited Charge Separation		
Reactions and Photophosphorylation	142	
The Dark Phase of Photosynthesis	145	
The Photosynthesising Mechanism without Chlorophyll Molecules	145	
The Increasteriestoric requirem atomote entring the second	1.40	
pnduction of the Nerve Impulse	149	
Non-Myelinated Nerve Fibres	120	
The Action Potential	152	
The Hodgkin-Huxley Equation	154	
The Propagation of Nerve Impulses along Nerve Fibres	150	
Synaptic Transmission	150 150	
Neuromuscular Synapses	128	
THE MOLECULAR MECHANISM OF MUSCLE CONTRACTION	161	
Structural Organization of Striated Muscles	161	
The Secondamic Reticulum in Striated Muscles	163	
The Microstructure of Myofibrils	165	
The Biochemistry of the Process of Muscle Contraction	167	
The Brochemistry of the Frocess of Musere construction		

Contents	ix
20 Modern Ideas on the Mechanism of Muscle Contraction	170
20.1. The Sliding Filament Model	171
20.2. Phenomenological Theories for the Mechanism of Contraction	
of Striated Muscles	171
20.3. The Molecular Theory of Muscular Contraction	173
21. The Contractile Systems in Nonskeletal Muscles	178
21.1. The Synchronous Flight Muscles in Insects	178
21.2. Asynchronous Flight Muscles in Insects	180
21.3. Movement with the Help of Cilia and Flagella	181
21.4. Specialised Muscle Cells	183
CHAPTER 7 THE MIGRATION OF ENERGY AND ELECTRONS IN BIOLOGICAL SYSTEMS	185
22 The Migration of Energy in One-Dimensional Molecular Systems	185
22.1. Excitons in Periodic One-Dimensional Molecular Structures	186
22. Solitons in ordered One-Dimensional Molecular Structures	190
22.3. Comparison of the Properties of Solitons and Excitons	195
22.4. Solitons in \propto -Spiral Protein Molecules	197
23. The Transport of Electrons in Biological Systems	203
23.1. Tunnelling Transfer of Electrons	204
23.2. The Role of Proteins in the Process of Electron Transport	
over Large Distances	205
23.3. The Basic Equations Defining the Motion of Extra Electron in	
a Quasi-One-Dimensional Molecular Chain	207
23.4. Continuum Approximation	
Bibliography	213
	222
Index	223
Other Titles in the Series	227

.

.

•

A second se

١