Table of Contents

Prefa	ace		
Chapter 1		Fundamentals of Dilution Modelling	1
1.1	The P	The Physics of Plume and Jet Modelling	
	1.1.1	A Simple Effluent Jet Issuing from a Single Submerged Port	1
	1.1.2	Plumes and Jets	3
	1.1.3	Nearfield Zone	4
	1.1.4	Intermediate Zone	4
	1.1.5	Farfield Zone	5
	1.1.6	Depth	6
	1.1.7	Stratitication	9
	1.1.8	Current	11
	1.1.9	Dilution Concepts	12
1.2	Diffus	ser Geometry	14
	1.2.1 Unidirectional Diffusers		
	1.2.2	Staged Diffusers	16
	1.2.3	Alternating Diffusers	16
1.3	General Model Types		
	1.3.1	The Eulerian Integral Model	18
	1.3.2	The Lagrangian Integral Model	24
	1.3.3	The Length Scale Model	26
Cha	pter 2	Mathematical Models	31
2.1	UM ((PLUMES 2 nd ed.)	31
	2.1.1	Model Theory	31
	2.1.2	Strengths and Weaknesses	39
2.2	RSB	(PLUMES 2 nd ed.)	40

	2.2.1 Model The	ory	41
	2.2.2 Strengths ar	nd Weaknesses	44
2.3	CORMIX2 version	1 2.10	45
	2.3.1 Assumption	ns and Boundary Conditions	46
	2.3.2 Strengths ar	nd Weaknesses	49
Chapter 3 Sewage Treatment Plant Outfalls			53
3.1	Model Validation		53
3.2	The Alyeska Outf	all in Port Valdez Alaska	56
	3.2.1 Input and	Output Files for November	58
	3.2.2 Input and	Output Files for April	59
	3.2.3 Compariso	on of Collected and Predicted Data in the Nearfield	60
	3.2.4 Fartield Sta	atistics	66
	3.2.5 Concluding	Remarks	68
3.3	The York Durhan	n STP Outfall in Lake Ontario	69
	3.3.1 July 23 No	ear and Farfield Data	70
	3.3.2 July 24 Ne	ear and Farfield Data	72
	3.3.3 Concluding	Remarks	73
3.4	The Boston STP (Outfall in Massachusetts Bay	74
Chapt	er 4 Thermal	Discharges	77
4.1	Model Validation		77
4.2	ARL Diffuser in	Long Island Sound	79
4.3	New England Pov	wer Company	84
4.4	Darlington Hydra	ulic Model Study	89
4.5	Concluding Rema	nrks	91
Chap	ter 5 Surface I	Discharges - Mimico Creek	93
5.1	CORMIX3 and the	e 3D Stratified Hydrodynamic Pollutant Transport Model	94
	5.1 .1 3D Stratif	ried Hydrodynamic Pollutant Transport Model Formulation	94

	5.1.2 CORMIX3	96
5.2	Field Data Selection	99
5.3	Results	100
5.4	Concluding Remarks	110
References		111
Appendix		
••		
Subject Index		167