Índice general

Resumen						
Al	ostra	act	III			
1.	Intr	roducción	1			
	1.1.	Temática de esta tesis	1			
	1.2.	Diagrama de fases de la materia de vórtices	3			
	1.3.	Vórtices tridimensionales y casi-bidimensionales	7			
	1.4.	Anclaje de la materia de vórtices	9			
	1.5.	Respuesta elástica de la materia de vórtices	10			
	1.6.	Fases sólidas de vórtices en presencia de anclaje de $bulk$	11			
		1.6.1. Teoría de anclaje colectivo de Larkin y Ovchinnikov	11			
		1.6.2. Vidrio de Bragg	13			
	1.7.	Objetivo y organización de la tesis	14			
2.	Téc	nicas Experimentales: Visualización directa de la red de vórtices				
	y ge	eneración de potenciales de anclaje	17			
	2.1.	Visualización directa de la red de vórtices	17			
		2.1.1. Estado del arte en la observación de la red de vórtices	17			
		2.1.2. Decoración magnética: observación de la red de vórtices con				
		resolución de vórtice	19			
	2.2.	Generación de potenciales de anclaje	29			
		2.2.1. Estado del arte en generación de anclaje periódico	29			
		2.2.2. Anclaje de Bitter	30			
		2.2.3. Anclaje periódico generado mediante litografía de electrones .	34			
3.	Car	acterización y control de la estructura del sólido de vórtices en				
	NbS	$\mathbf{Se}_2 \mathbf{y} \mathbf{Bi}_2 \mathbf{Sr}_2 \mathbf{Ca} \mathbf{Cu}_2 \mathbf{O}_8$	39			
	3.1.	Propuesta de diagrama de fases unificado	40			
	3.2.	Características estructurales de las fases sólidas de vórtices en $\rm NbSe_2$	43			
		3.2.1. Transición de fase entre el sólido de vórtices ordenado y de-				
		sordenado asociada al efecto pico: estado del arte previo $\ .$.	43			
		3.2.2. Diagrama de fases detectado mediante mediciones de trans-				
		porte en las muestras de $NbSe_2$ estudiadas	44			
		3.2.3. Estructura de vórtices en experimentos FC observada median-				
		te decoración magnética	48			

	3.3.	Estruc	Estructura del sólido de vórtices a campos bajos en $Bi_2Sr_2CaCu_2O_8$ 50				
		3.3.1.	Estructura de vórtices en experimentos FC a campos bajos				
			observada mediante decoración magnética	50			
		3.3.2.	Efectos estructurales inducidos por la presencia de defectos				
			correlacionados	54			
	3.4.	Perspe	ectivas para la propuesta del diagrama de fases unificado	56			
	3.5.	Crecimiento de cristales de vórtices: la técnica de ordenamiento					
		dinám	ico	57			
		3.5.1.	Propuesta teórica de ordenamiento dinámico	57			
		3.5.2.	Procedimiento experimental de ordenamiento dinámico	59			
		3.5.3.	Crecimiento de cristales de vórtices en $NbSe_2$	60			
		3.5.4.	Tiempos de relajación característicos de la red de vórtices en				
			experimentos FCR en NbSe ₂	65			
		3.5.5.	Ordenamiento dinámico en Bi ₂ Sr ₂ CaCu ₂ O ₈	67			
	3.6.	Conclu	usiones	72			
	T	• • •					
4.	inte	raccio	n de la red de vortices con una estructura superficial de	e 73			
		Condi	aiones energéticas y de nucleación y arcaimiente para que el	75			
	4.1.	anclai	a de Bitter sea efectivo	74			
	19	Angle	ie de Bitter en NbSe	75			
	4.2.	Ancia	Estructure de réntiere policristeline en presencie de une es	75			
		4.2.1.	Estructura de vortices policristalina en presencia de una es-	75			
		4.9.9	Fotmature de méntione policristeline en presencie de une es	75			
		4.2.2.	Estructura de vortices policristalina en presencia de una es-	70			
		499	Interpresión entre la estructura de vérticas endenada dinémi	10			
		4.2.3.	interaccion entre la estructura de vortices ordenada dinami-	70			
	4.9	Angle	camente y una estructura monocristanna de anciaje	19			
	4.3.	Ancia	Permette de la red de stárticas EC menormiste line con defector	00			
		4.3.1.	Respuesta de la red de vortices FC monocristalina con defectos				
			róplice	02			
		4 9 9	Interpretión de la estructura de márticas con una alta demaidad	00			
		4.3.2.	de defectos topológicos y su róplico	96			
	4 4	Datas	de delectos topologicos y su replica	00			
	4.4. 4.5	Conclu	sturas de vortices conmensuradas con el anciaje de Bitter	90 92			
	1.0.	Conch		52			
5.	Red	de v	órtices cuadrada en ${\bf Bi}_2{f Sr}_2{f CaCu}_2{f O}_8$: propagación de la	a			
	tran	sform	ación de simetría inducida por estructuras superficiales	s			
	de a	nclaje		95			
	5.1.	Efecto	del anclaje superficial generado mediante <i>dots</i> de Fe	96			
		5.1.1.	Potencial de anclaje con simetría hexagonal	96			
		5.1.2.	Potencial de anclaje con simetría cuadrada	101			
		5.1.3.	Comparación entre el anclaje producido por estructuras su-				
			perficiales con simetrías cuadrada y hexagonal	103			

ÍNDICE GENERAL

	5.2.	Mecanismos de anclaje de la estructura de <i>dots</i> de Fe: magnético vs.	105					
	53	Prensformación de simetría inducida a lo largo del cristal tridimon	105					
	0.0.	sional de vórtices	108					
		5.3.1. Procedimiento experimental para estudiar la transformación	100					
		de simetría a lo largo de la dirección del vórtice	109					
		5.3.2. Estructura de la red de vórtices en la cara inferior para espe-						
		sores mayores a $4.5 \mu\text{m}$	110					
		5.3.3. Longitud de propagación de la simetría cuadrada a lo largo						
		del vórtice	111					
		5.3.4. Visualización directa de la interfaz entre las estructuras de						
		vórtices cuadrada y hexagonal	114					
	5.4.	Conclusiones	118					
~	T							
6.	Transformación de simetria elástica inducida en NbSe ₂ mediante							
	pot	iciales superficiales de anciaje	121					
	0.1.	Potencial de anciaje con simetria hexagonal	122					
	6.2.	Potencial de anciaje con simetria cuadrada	124					
	6.3. 6.4.	. Modelo geométrico de la transformación elástica en $NbSe_2$ 1 . Análisis comparativo de la respuesta de la red de vórtices en $NbSe_2$						
		$V B_{12}Sr_2CaCu_2O_8$ frente a potenciales superficiales de anciaje con	100					
	0.5		133					
	6.5.	Conclusiones	139					
7.	Con	Conclusiones generales						
	7.1.	Perspectivas y futuros experimentos	145					
Bi	bliog	afía	Ι					
A	grade	imientos	XI					
\mathbf{Tr}	abaj	s Publicados	XIII					