CONTENTS

Part One

MODERN THEORIES OF DIFFERENTIATION AND INTEGRATION

CHAPTER I: DIFFERENTIATION

Let besgue's Theorem on the Derivative of a Monotonic Function	1	3
1. Example of a Nondifferentiable Continuous Function 2. Lebesgue's Theorem on the Differentiation of a Monotonic	3	
Function. Sets of Measure Zero	5	
3. Proof of Lebesgue's Theorem	6	
4. Functions of Bounded Variation	9	
Sor ne Immediate Consequences of Lebesgue's Theorem		11
5. Fubini's Theorem on the Differentiation of Series with	1	
Monotonic Terms	11	
6. Density Points of Linear Sets	12	
7. Saltus Functions	13	
8. Arbitrary Functions of Bounded Variation	15	
9. The Denjoy-Young-Saks Theorem on the Derived Numbers of		
Arbitrary Functions	17	
Interval Functions		19
10. Preliminaries	19	
11. First Fundamental Theorem	21	
12. Second Fundamental Theorem	22	
13. The Darboux Integrals and the Riemann Integral	23	
14. Darboux's Theorem	25	
15. Functions of Bounded Variation and Rectification of		
Curves	26	

CHAPTER II: THE LEBESGUE INTEGRAL

Definition and Fundamental Properties		29
16. The Integral for Step Functions. Two Lemmas	29	
17. The Integral for Summable Functions	31	
18. Term-by-Term Integration of an Increasing Sequence		
(Beppo Levi's Theorem)	33	
19. Term-by-Term Integration of a Majorized Sequence (Le-		
besgue's Theorem)	36	
20. Theorems Affirming the Integrability of a Limit Function	38	
21. The Schwarz, Holder, and Minkowski Inequalities	40	
22. Measurable Sets and Measurable Functions	43	
Indefinite Integrals. Absolutely Continuous Functions		47
23. The Total Variation and the Derivative of the Indefinite	47	
Integral	47	
24. Example of a, Monotonic Continuous Function Whose	40	
Derivative Is Zero Almost Everywhere	48	
25. Absolutely Continuous Functions. Canonical Decomposition of Monotonic Functions	50	
26. Integration by Parts and Integration by Substitution	50 54	
20. Integration by Parts and Integration by Substitution 27. The Integral as a Set Function	56	
27. The integral as a set Pulletion	50	
The Space L^2 and its Linear Functionals. L^p Spaces		57
28. The Space L^2 ; Convergence in the Mean; the Riesz-Fischer		
Theorem	57	
29. Weak Convergence	60	
30. Linear Functionals	61	
31. Sequence of Linear Functionals; a Theorem of Osgood	63	
32. Separability of L^2 . The Theorem of Choice	64	
33. Orthonormal Systems	66	
34. Subspaces of L^2 . The Decomposition Theorem	70	
35. Another Proof of the Theorem of Choice. Extension of		
Functionals	72	
36. The Space L^p and Its Linear Functionals	73	
37. A Theorem on Mean Convergence	78	
38. A Theorem of Banach and Saks	80	
Functions of Several Variables		81
20 Definitions Driveinte of Transition	01	

39. Definitions.	Principle of	I ransitio	n	81
40. Successive	Integrations.	Fubini's	Theorem	83

CONTENTS

 41. The Derivative Over a Net of a Non-negative, Additive Rectangle Function. Parallel Displacement of the Net 42. Rectangle Functions of Bounded Variation. Conjugate Nets 43. Additive Set Functions. Sets Measurable (B) 	84 87 89	
Other Definitions of the Lebesgue Integral		<i>92</i>
44. Sets Measurable (L)	<i>92</i>	
45. Functions Measurable (L) and the Integral (L)	94	
46. Other Definitions. Egoroff's Theorem	96	
47. Elementary Proof of the Theorems of Arzela and Osgood	100	
48. The Lebesgue Integral Considered as the Inverse Operation		
of Differentiation	103	
CHAPTER III: THE STIELTJES INTEGRAL AND IT GENERALIZATIONS	ГS	
Linear Functionals on the Space of Continuous Functions		105
49. The Stieltjes Integral	105	
50. Linear Functionals on the Space C	106	
51. Uniqueness of the Generating Function	111	

52. Extension of a Linear Functional	112	
53. The Approximation Theorem. Moment Problems	1 1	5
54. Integration by Parts. The Second Theorem of the Mean	118	
55. Sequences of Functionals	119	

Generalization of the Stieltjes Integral

The Riemann-Stieltjes and Lebesgue-Stieltjes Integrals	122
Reduction of the Lebesgue-Stieltjes Integral to That of	
Lebesgue	124
Relations Between Two Lebesgue-Stieltjes Integrals	126
Functions of Several Variables. Direct Definition	128
Definition by Means of the Principle of Transition	130
	Reduction of the Lebesgue-Stieltjes Integral to That of Lebesgue Relations Between Two Lebesgue-Stieltjes Integrals Functions of Several Variables. Direct Definition

The Daniel Integral

61.	Positive Linear Functionals	132
62.	Functionals of Variable Sign	134
63.	The Derivative of One Linear Functional With Respect to	
	Another	137

122

132

Part Two

INTEGRAL EQUATIONS. LINEAR TRANSFORMATIONS

CHAPTER IV: INTEGRAL EQUATIONS

The Method of Successive Approximations		143
64. The Concept of an Integral Equation	143	
65. Bounded Kernels	145	
66. Square-Summable Kernels. Linear Transformations of the		
Space L^2	147	
67. Inverse Transformations. Regular and Singular Values	151	
68. Iterated Kernels. Resolvent Kernels	155	
69. Approximation of an Arbitrary Kernel by Means of Kernels		
of Finite Rank	158	
The Fredholm Alternative		161
70. Integral Equations With Kernels of Finite Rank	161	
71. Integral Equations With Kernels of General Type	165	
72. Decomposition Corresponding to a Singular Value	167	
72. Decomposition corresponding to a singular value 73. The Fredholm Alternative for General Kernels	170	
75. The frequentiative for General Kernels	170	
Fredholm Determinants		172
74. The Method of Fredholm	172	
75. Hadamard's Inequality	176	
Another Method, Based on Complete Continuity		177
76. Complete Continuity	177	
77. The Subspaces \mathfrak{M}_n and \mathfrak{N}_n	177	
78. The Cases $\nu = 0$ and $\nu \ge 1$. The Decomposition Theorem	179	
	183 187	
79. The Distribution of the Singular Values	10/	
80. The Canonical Decomposition Corresponding to a Singular Value	188	
	100	
Applications to Potential Theory		190

81. The Dirichlet and Neumann Problems. Solution by Fredholm's Method 190

CHAPTER V: HILBERT AND BANACH SPACES

Hilbert Space

82. Hilbert Coordinate Space	195
83. Abstract Hilbert Space	197
84. Linear Transformations of Hilbert Space. Fundamer	ntal
Concepts	200
85. Completely Continuous Linear Transformations	203
86. Biorthogonal Sequences. A Theorem of Paley and Wiene	r 208
Banach Spaces	210
87. Banach Spaces and Their Conjugate Spaces	210
87. Banach Spaces and Their Conjugate Spaces 88. Linear Transformations and Their Adjoints	210 215

91. A Return to Potential Theory 224

CHAPTER VI: COMPLETELY CONTINUOUS SYMMETRIC TRANSFORMATIONS OF HILBERT SPACE

Existence of Characteristic Elements. Theorem on Series Development

92. Characteristic Values and Characteristic Elements. Funda-		
mental Properties of Symmetric Transformations	227	
93. Completely Continuous Symmetric Transformations	231	
94. Solution of the Functional Equation $j - \lambda A f = g$	235	
95. Direct Determination of the n-th Characteristic Value of		
Given Sign	237	
96. Another Method of Constructing Characteristic Values and		
Characteristic Elements	240	
Transformations with Symmetric Kernel		242
97. Theorems of Hilbert and Schmidt	242	
98. Mercer's Theorem	245	
Applications to the Vibrating-String Problem and to Almost		
Periodic Functions		247
99. The Vibrating-String Problem. The Spaces D and H	247	
100. The Vibrating-String Problem. Characteristic Vibrations	251	
101. Space of Almost Periodic Functions	254	

195

227

256

280

291

296

308

102. Proof of the Fundamental Theorem on Almost Periodic

103. Isometric Transformations of a Finite-Dimensional Space	260	
CHAPTER VII: BOUNDED SYMMETRIC, UNITARY, A NORMAL TRANSFORMATIONS OF HILBERT SPAC		
Symmetric Transformations		261
 104. Some Fundamental Properties 105. Projections 106. Functions of a Bounded Symmetric Transformation 107. Spectral Decomposition of a Bounded Symmetric Transformation 108. Positive and Negative Parts of a Symmetric Transformation. Another Proof of the Spectral Decomposition 	 261 266 269 272 277 	
Unitary and Normal Transformations		280
109. Unitary Transformations 110. Normal Transformations. Factorizations 111. The Spectral Decomposition of Normal Transformations.	280 284 286	
Functions of Several Transformations	200	29 1
Unitary Transformations of the Space L^2		4 9
112. A Theorem of Bochner 113. Fourier-Plancherel and Watson Transformations	291 293	
CHAPTER VIII: UNBOUNDED LINEAR TRANSFORMAT OF HILBERT SPACE	ΓION	IS
Generalization of the Concept of Linear Transformation		290
114. A Theorem of Hellinger and Toeplitz. Extension of the		
Concept of Linear Transformation	<i>296</i>	
115. Adjoint Transformations 116. Permutability. Reduction	299 301	
117. The Graph of a Transformation	303	
118. The Transformation $B = (I + T^*T)^{-1}$ and $C = T(I + T^*T)^{-1}$	307	
Self-Adjoint Transformations. Spectral Decomposition		308
1 19. Symmetric and Self-Adjoined Transformations. Definitions and Examples	308	

Functions

	120. Spectral Decomposition of a Self-Adjoint Transformation121. Von Neumann's Method. Cayley Transforms122. Semi-Bounded Self-Adjoint Transformations	313 320 323	
Exte	ensions of Symmetric Transformations		325
	 123. Cayley Transforms. Deficiency Indices 124. Semi-Bounded Symmetric Transformations. The Method of Friedrichs 125. Krein's Method 	325 329 336	
	CHAPTER IX: SELF-ADJOINT TRANSFORMATION FUNCTIONAL CALCULUS, SPECTRUM, PERTURBAT ctional Calculus		S 341
	126. Bounded Functions	341	
	127. Unbounded Functions. Definitions	343	
	128. Unbounded Functions. Rules of Calculation	346	
	129. Characteristic Properties of Functions of a Self-Adjoint		
	Transformation		
	130. Finite or Denumerable Sets of Permutable Self-Adjoint	351	
	•		
	Transformations	355	
	131. Arbitrary Sets of Permutable Self-Adjoint Transformations	358	
The	Spectrum of a Self-Adjoint Transformation and Its Pertur	<u> </u>	
	bations		360
	122 The Greatman of a Calf Adiated Transformation Decam		200
	132. The Spectrum of a Self-Adjoint Transformation. Decom-		
	position in Terms of the Point Spectrum and the Con-		
	tinuous Spectrum	360	
	133. Limit Points of the Spectrum	363	
	134. Perturbation of the Spectrum by the Addition of a Com-		
	pletely Continuous Transformation	367	
	135. Continuous Perturbations	368	
	136. Analytic Perturbations	373	

CHAPTER X: GROUPS AND SEMIGROUPS OF TRANSFORMATIONS

Unit	ary Transformations	380
1	37. Stone's Theorem	380
1	38. Another Proof. Based on a Theorem of Bochner	385

ХI

CONTENTS

139. Some Applications of Stone's Theorem 140. Unitary Representations of More General Groups	388 391	
Non-Unitary Transformations		393
141. Groups and Semigroups of Self-Adjoint Transformations 142. Infinitesimal Transformation of a Semigroup of Transformation	393	
mations of General Type 143. Exponential Formulas	397 399	
Ergodic Theorems		406
144. Fundamental Methods145. Methods Based on Convexity Arguments146. Semigroups of Nonpermutable Contractions	406 410 412	
CHAPTER XI: SPECTRAL THEORIES FOR LINE TRANSFORMATIONS OF GENERAL TYPE	A R	
Applications of Methods from the Theory of Functions		415
147. The Spectrum. Curvilinear Integrals148. Decomposition Theorem149. Relations Between the Spectrum and the Norms of Iterate	415 418	
Transformations 150. Application to Absolutely Convergent Trigonometric Serie 151 Elements of a Functional Calculus 152. Two Examples	423	
Von Neumann's Theory of Spectral Sets		435
 153. Principal Theorems 154. Spectral Sets 155. Characterization of Symmetric, Unitary, and Norm Transformations by Their Spectral Sets 	435 439 al 443	
Bibliography		447
Appendix		
Extensions of Linear Transformations in Hilbert Space Which Extend Beyond This Space		457
Index		493

504

Notation & Symbols