CONTENTS

	Introduction	1
I	Maxwell's Equations, Wave Equation and Waves	4
	1. A pictorial view of E-M Waves	4
	1.2 Wave equation and plane waves	8
	1.3 Spherical waves	15
	1.4 Wave vector, phase velocity, group velocity	17
II	The Laser	23
	2.1 Definiton of laser oscillation	23
	2.2 Stimulated emission	26
	2.3 Level broadening	33
	2.4 Consequence of broadening	38
	2.5 Impossibility of having gain (i.e. $\alpha(\nu_l) < 0$) in a two-level	
	system in thermal equilibrium	42
	2.6 Pumping	43
	2.7 Rate equations approach	43
	2.8 Threshold oscillation ,	49
	2.9 Threshold pump power	53
	2.10 Above-threshold oscillation and gain saturation	53
	2.11 Output power calculation	57
III	Snell's Law, Fresnel Equations, Brewster Angle and Critical Angle	62
	3.1 Reflection and refraction at boundaries	62
	3.2 Taking advantage of the Brewster angle and the features	
	of the reflectance and transmittance	67
	3.3 Critical angle and total internal reflection	71
	3.4 Demonstration of some important results of the Fresnel	
	equations	74
	3.5 Making good use of the evanescent field	81
IV	Resonator, A Geometrical View	83
	4.1 Introduction	83
	4.2 General considerations	84
	4.3 Case of one lens	85

l

	4.4	Case of two lenses and equivalence to one round trip	
		in the cavity	89
	4.5	General case of a biperiodic lens series and the condition	
		for a stable resonator	90
V	Par-a	ixial Gaussian Wave Propagation and Modes	95
	5.1	Definition: spherical wave	95
	5.2	Definition: Gaussian amplitude variation of a wavefront	98
	5.3	Definition: Gaussian spherical laser beam	98
	5.4	Huygen-Fresnel's diffraction approach to the propagation	
		of a wavefront	99
	5.5	Propagation of a Gaussian plane wave	102
	5.6	Propagation of a general Gaussian spherical wavefront	106
	5.7	Propagation of a Gaussian spherical wavefront through a	
		thin lens	108
	5.8	Focal spot size	110
	5.9	Modes	113
	5.10	Spatial-temporal modes	116
VT.	Onti	cal Anisotrony in a Lossless Medium	120
V I	6 1	Ontical anisotropy	120
	62	Electromagnetic wave interaction with an anisotropic medium	126
	63	Classification of anisotropic material optically	149
	6.5	Double refraction at a boundary	157
	65	Conical emission from a biaxial crystal	160
	6.6	Physical discussion	162
VII	Pola	rization, its Manipulation and Jones Vectors	164
	7.1	Superposition of E-M waves	164
	7.2	Linear polarization	166
	7.3	Circular polarization	168
	7.4	General or elliptic polarization	170
	7.5	Some comments on the sense of rotation of circular and	
		elliptical polarization	175
	7.6	Anisotropic material as polarizer	176
	7.7	Wave plates and wave retarders	178
	7.8	Jones vectors	185
	7.9	Propagation through wave plates using Jones matrix	
		formalism	189

•

viii

		ix
	7 .10 The power of crossed polarizers	199
VIII	Electric Field Induced Anisotropy: Electro-optics	
	and Q-Switching	202
	8.1 Electric field induced anisotropy	203
	8.2 Linear electro-optic effect: Pockels effect	205
	8.3 Application to electrical modulation of light waves:	
	electro-optic modular	214
	8.4 Quadratic electro-optic effect	222
	8.5 Electra-optical shutter: short laser pulse slicer and	
	Q-switching lasers	226
	8.6 Transverse biasing of E-O crystal	239
	8.7 Closing remark	241
IX	Mechanical Force Induced Anisotropy and Acousto- optics	242
	9.1 The strain matrix	243
	9.2 Mechanically induced anisotropy	249
	9.3 Fundamentals of acousto-optic interaction	257
	9.4 Diffraction by an acoustic wave in an anisotropic medium	269
	9.5 Higher order diffraction by an acoustic wave	274
	9.6 Closing remarks .	280
X	Magnetic Field Induced Anisotropy	281
	10.1 Optical activity	281
	10.2 Faraday rotation	283
	10.3 Discussion	285
XI	Importance of Anisotropy in Second Harmonic Generation (SHG)	288
	11 .1 Introduction	288
	11.2 Second harmonic generation (SHG)	289
	1 1.3 Phase matching	293
XII	Short Laser Pulse Generation — A Review	305
	12.1 D. Faubert & S. L. Chin, "Short laser pulse generation:	
	part one", Optics and Laser Technology (August 1982)	
	рр. 197-206.	306
	12.2 D. Faubert & S. L. Chin, "Short laser pulse generation:	

	part two," Optics and Laser Technology (October 1982)	
	pp. 245-254.	316
12.3	D. Faubert, P. Galarneau & S. L. Chin, "An electro-optical	
	technique to vary continuously a laser pulse", Optics and	
	Laser Technology (April 1981) pp. 79-82.	326
Appendix		331
	S. L. Chin, "Laser Beam Transport" in Laser Applications	
	in Physical Chemistry, ed. D. K. Evans, Marcel Dekker, Inc.,	
	N. Y., 1989, pp. 39-62	

Index

357

.