17 3.2. Why Superfields are Superfinite miner beterroo-rise m

-				1.4	e.
H'O	ro	147	01	•	

			3.13.	
1.	Intro	duction - Realitional loss substantial a-A	3.14.	1
		Symmetric of the A-B Later large and Benediczy Condition		
2.	Brok	en Symmetry in Superfluid Phases of ³ He		12
	2.1.	Symmetry G of the Normal State of Liquid ³ He		12
	2.2.	Landau Theory of Superfluid Transition in ³ He		13
	2.3.	Classes of Superfluids		15
	2.4.	Equilibrium Order Parameters for A- and B-phases		
		Spin Waves. Goldstone and Quasi-Goldstone ModeaHe ho		16
	2.5.	Degeneracy of Equilibrium States	b.ab	18
	2.6.	Manifold of Degenerate States in ³ He-B		18
	2.7.	Magnetic Anisotropy in ³ He-A		19
	2.8.	Liquid-crystal Anisotropy in ³ He-A		20
	2.9.	Manifold of Degenerate States in ³ He-B		22
	2.10.	Residual Symmetry H of ³ He-B and b additional and the second state of the second		23
	2.11.	Residual Symmetry H of ³ He-A		24
	2.12.	Combined Spin-orbital Symmetry and Relative		
		Spin-orbital Anisotropy in ³ He-B		26

iiig

that or o V

3.	Textures and Supercurrents in Superfluid Phases of ³ I	Ie 27
	3.1. Textures, Gradient Energy and Rigidity	27
	3.2. Why Superfuids are Superfluid	30
	3.3. Superfluidity and Response to a Transverse Gauge Field	32
	3.4. Nonpotential Superflow in ³ He-A	34
	3.5. Perpetuum Motion of the A-phase	35
	3.6. Textural Energy and Supercurrent in ³ He-A	36
	3.7. Spin Soliton in ³ He-A	38
	3.8. Order Parameter Textures	39
	3.9. Coherence Length and London Limit	40
	3.10. Disgyrations and Vortex. London Equations for the	
	Orbital Texture	41
	3.11. Disgyrations and Vortex. Singularity in the Degeneracy	
	Parameters	44
	3.12. Radial Disgyration. The Hard Core Structure	45
	3.13. Pure Vortices. The Hard Core Structure	46
	3.14. A-B Interface. Symmetry and Structure	48
	3.15. Symmetry of the A-B Interface and Boundary Condition	ıs 50
4.	Bose Excitations in Superfluid Phases of ³ He	53
	4.1. Goldstone Bosons in ³ He-A	53
	4.2. Soft Modes Dynamics and Lie Algebra of Group G:	
	Spin Dynamics and $SO_3^{(S)}$ Symmetry	54
	4.3. Spin Waves. Goldstone and Quasi-Goldstone Modes	56
	4.4. Nuclear Magnetic Resonance in ³ He-A	57
	4.5. NMR on Textures in ³ He-A	58
	4.6. Vacuum Symmetry H and Quantum Numbers of Bose a	nd
	Fermi Excitations in ³ He-A	60
	4.7. Bosonic Collective Modes in ${}^{3}\text{He}$ and Irreducible	
	Representations of Group H	63
	4.8. Bosonic Collective Modes in ³ He-B	65
	4.9. Dynamics of the Goldstone Fields in ³ He-B	66
	4.10. Superfluid Hydrodynamics in ³ He-B	68
	4.11. Goldstone Bosons in ³ He-B	69

		Contents	1X
5.	Fern	ni Excitations in Superfluid Phases of ³ He	71
	5.1.	Bogoliubov-Nambu Matrix for Fermions	
		in Pair-correlated Fermi Systems	71
	5.2.	Quasiparticles in Conventional Superconductors	72
	5.3.	Representation for the Gap Function in ³ He	
		and the Order P'arameter	74
	5.4.	Quasiparticle Spettrum in ³ He-B	75
	5.5.	Bogoliubov Hamiltonian for Quasiparticles in ³ He-B	
		vs. Dirac Hamiltonian for Electrons	75
	5.6.	Lorentz Symmetry as Combined Symmetry,	
		View from ³ He-B	77
	5.7.	Breaking of the Relative Lorentz Symmetry	78
	5.8.	Gap Nodes in the Quasiparticle Spectrum of ³ He-A	
		Class of Intermediate Superfluids	79
	5.9.	Combined Gauge Symmetry and Gap Nodes	81
	5.10	Stability of Gap Nodes in the A-phase.	
		Evolution of Fermi Points at $A \rightarrow B$ Transition	82
	5.11	. Spectrum Near the Fermi Points and Relativistic	
		Massless Particles	84
	5.12	. Left-handed and Right-handed Fermions Near the	
		Fermi Points	86
	5.13	. Spin-orbit Waves and W Bosons	89
	5.14	. Mass of the W Bosons is Zero in the BCS Theory of	
		³ He-A	90
	5.15	. Hidden Symmetry in the A-phase	91
	5.16	. Origin of the W Boson Mass in ³ He-A	93
	5.17	. Gravitons in ³ He-A	94
	5.18	. Cosomological Term in the Einstein Equations,	
		View from ³ He-A	95
6.	Orb	ital Dynamics and Anomalies in Quantum	
	Fie	ld Theory	98
	6.1.	Lie Algebra of Poisson Brackets for A-phase	
		Orbital Dynamics	98

	6.2.	Anomaly Cancellation as Lifshitz Transition	99
	6.3.	The Anomaly-free Equations for Orbital Dynamics	100
	6.4.	Phase Slippage Through the Dynamics of the	
		Orbital Vector	102
	6.5.	Gap Nodes Contributions to the Orbital Dynamics	104
	6.6.	Anomaly in Orbital Dynamics and Chiral Anomaly	105
	6.7.	Spectrum of the Chiral Fermions in Magnetic Field	106
	6.8.	Anomalous Branch and Nonzero Density of States	
		in the l Texture	107
	6.9.	Zero Charge Effect and Nonanalyticity of the Magnetic	
		Energy of the Vacuum	110
	6.10.	Nonanalytic London Energy of the ³ He Vacuum	111
	6.11.	Chiral Anomaly and Nonconservationn of the Vacuum	
		Current	112
	6.12.	Dissipation in the Orbital Motion at Zero Temperature	
		and Pair Creation in Electric Field in Particle Physics	114
	6.13.	Wess-Zumino Action for the Orbital Dynamics	116
	6.14.	Internal Angular Momentum of the A-phase and	
		the Mass of Photon	119
	6.15.	Pair Creation by Accelerated Object and the Unruh Effect	121
7.	Торо	ological Objects in Superfluid Phases of ³ He	127
	7.1.	Quantum Number and Topological Charge	127
	7.2.	Topological and Symmetry Classification Schemes	
		of Textures	128
	7.3.	Half-quantum Vortex and Combined Invariance	130
	7.4.	Topological Classification of the Linear Defects	132
	7.5.	Topology of Linear Defects in the A-phase	134
	7.6.	Unwinding of the Singularity in the Doubly	
		Quantized Vortex	136
	7.7.	Parity Breaking in the Continuous Vortex	139
	7.8.	Topology of the Continuous Textures. Second	
		Homotopy Group	140
	7.9.	Topological Phase Transition in Continuous Vortices	142

		Contents	Xi
	7.10.	Hedgehog in the d Field. t'Hooft-Polyakov Monopole	146
	7.11.	Hedgehog in the \overline{l} Field. Dirac Monopole	148
	7.12.	Monopole and Boojum. Relative Homotopy Group	150
	7.13.	Topology of Vortices and Disclinations in the B-phase	154
	7.14.	Soliton Terminating on the Disclination in the B-phase	157
	7.15.	Topological Confinement of the Defects in Superfluid ³ He	159
	7.16.	Stabilization of the Vortex-Disclination with the Solitonic	
		Tail in the Rotating Vessel	160
8.	Spor	ntaneous Symmetry Breaking in the [•] He Vortices	164
	8.1.	Compulsory and Spontaneous Symmetry Breaking in	
		Inhomogeneous Vacuum	164
	8.2.	Symmetry of Linear Defects	166
	8.3.	Symmetry of Vortices in ³ He-B	167
	8.4.	The Most Symmetric Vortices in ³ He-B Vortices	170
	8.5.	Broken Parity in ³ He-B Vortices	173
	8.6.	A-phase Core of the ³ He-B Vortex	175
	8.7.	Planar Phase vs. A-phase in the Core of the	
		^a He-B Vortex	177
	8.8.	Broken Axisymmetry in He-B vortex. Molecule	
		of Half-quantum Vortices	179
	8.9.	Physical Properties of the Vortices with Broken Symmetry	180
9.	Qua	si-Two-Dimensional Superfluid ³ He:	
	Frac	tional Charge, Spin and Statistics	184
	9.1.	Quasi-two-dimensional Objects in Superfluid ³ He	184
	9.2.	Superfluid Phases in Thin Films	186
	9.3.	Generations of Fermions	186
	9.4.	Symmetry and Internal Topology of Ground State	188
	9.5.	Topological Invariant for the Fermi Point	190
	9.6.	Topological Invariant in Terms of the Green's Function	192
	9.7.	Topology of the Ground State of the ³ He Film	194
	9.8.	Adiabatical Process, Conservation of Topological Invariant	
		and Diabolical Points	195

9.9. Quantum Statistics of Solitons and θ -term in Action	197
9.10. Quantum Statistics of Solitons in the ³ He Film	201
9.11. θ -term and Orbital Ferromagnetism	202
9.12. Spin Current QHE in Superfluid ³ He-A Films	203
9.13. Topological Quantization in Other Superfluid Phases	
of ³ He Films	205

10. Conclusion

20	7
21	1

Distinations of the West of the West Constraint of the State of the St
Banar Phasework ophischin and Baroldreffaga A larratal
onalogical Investigation for the Formi Pointerio Desilated
Positis Joseph I would the definition the statistical termination