CONTENTS

PREFACE

CHAPTER	I: LINEAR ALGEBRAIC EQUATIONS	
1.1		1
1.2	Cramer's Solution	1
1.3	Gaussian Elimination	2
1.4		3
1.5	A Basic Formula	5
1.6	Maximization	6
1.7		6
1.8		1 2 3 5 6 6 7 7
1.9		
	Bibliography and Comments	10
CHAPTER	II: FINDING THE SQUARE ROOT OF A POSITIVE DEFINITE MATRIX	
2.1	Introduction	11
2.2	Use of the Canonical Representation	11
2.3	A Formula from Control Theory	12
2.4	Upper and Lower Bounds	12 12 13 13 13
2.5	Dynamic Programming	12
2.6	Discussion	13
2.7	Square Roots	13
2.8	Commutivity	13
2.9	Bounds	
2.10	General Matrices	14

CHAPTER I'II: LARGEST AND SMALLEST CHARACTERISTIC ROOTS

3.1	Introduction	15
3.2	Positive Definite Matrices	16
3.3	Better Bounds	16
3.4	Accuracy of Estimates	17
3.5	Associated Characteristic Vector	18
3.6	The Rayleigh Quotient	18
3.7	Symmetric Matrices	18
3.8	Application to Sturm-Liouville Equations	18
3.9	Application to Integral Equations	19
3.10	General Matrices	19
3.11	The Smallest Characteristic Root of a Sturm-Liouville Equation	19
3.12	The Equation Determining the Characteristic Values	23
3.13	Di scussi on	23
3.14	Analytic Preliminaries	24
3.15	Inequalities	25
3.16	Rate of Convergence	26
3.17	Example	27
3.18	Inequalities for Π_{λ}	28
3.19	The Equation $u'' + \lambda(1+t)u = 0$	29
3.20	Alternate Computational Scheme for Polynomial	23
3.20	Coefficients	32
3.21	Extension to Higher Order Equations	33
3.22		34
3.23	The Rayleigh Quotient and Dynamic Programing	35
3.24	Dynami c Programmi ng Approach	36
3.25	Computational Aspects	37
3.26	Nonlinear Characteristic Value Problems	37
3.27	Higher Characteristic Values	37
3.28	Matrix Theory	
	Selective Computation On The Integral Equation $\lambda f(x) = \int_0^a K(x-y)f(y)dy$	38
3.29 3.30	The integral Equation $\lambda f(x) = \int_{0}^{\infty} \kappa(x-y)f(y)dy$	38
3.3U 2.21	11150 11001	39
3.31 3.32	Second Proof	42
	An Approximation Method for Small a	47
3.33	On the Non-Negativity of Green's Functions	48
3.34	Statement of Results	48
3.35	Di scussi an	49
3.36	Proof of Theorem	50
3.37	On An Iterative Procedure for Obtaining the Perron	
0.00	Root of a Positive Matrix	51
3.38	On The Second Greatest Characteristic Root Of A	-
0.00	Positive Definite Matrix	55
3.39	Determination of X2	59
3.40	Determination of $\lambda_1 \lambda_2$	59
3.41	The Modified Kronecker Sum And Product	60
3.42	Characteristic Values	60
	Bibliography and Comments	60
	G I J	1000

		XIII
CHAPTER	IV: ON THE DETERMINATION OF CHARACTERISTIC VALUES FOR A CLASS OF STURM-LIOUVILLE PROBLEMS	
4. 1	Introduction	62
4. 2	The Equation Determining The Characteristic Values	65
	Di scussi on	66
4: 4	Analytic Preliminaries	66
	Inequalities	68
4-6	Rate of Convergence	69
4.7	Di scussi on	69
4. 8	Inequalities for Π , λ ,	.70
	The Equation $u'' + \lambda(1+t)u = 0$	71
4. 10	Alternate Computational Scheme for Polynomial	
	Coefficients	74
4. 11	Extension to Higher Order Equations	75
CH A DEED	V. LINDAD DIEDEDENTIAL PONATIONO HETEL CONCEANT	
CHAPTER	V: LI NEAR DI FFERENTI AL EQUATI ONS WITH CONSTANT COEFFI CI ENTS	
5. 1	Introduction	77
	Standard Procedures	77
5.2 5.4	USE OT THE POWERS OF IWOAS The Determination of AS	78
5.4		81 81
5. 5	Another Method for Calculating the Matrix Exponential A Result Concerning Stability Matrices	82
5. 7	The Lyapunov Equation	82
0	The Inverse Matrix	83
5. 9	The Inverse of a Stability Matrix	83
	A Result of Ostrowski	84
5. 11	Inverses	84
	Bibliography and Comments	85
CHAPTER	VI: LI NEAR DI FFERENTI AL EQUATIONS WITH VARI ABLE COEFFI CI ENTS	
	Introduction	86
6. 1	Peri odi c Matri ces	87
	A Nonsingular Matrix is an Exponential	87
6. 3	The Determination of $P(t)$	88
6: 4	A Perturbation Procedure	89
0.7	Asymptotic Behavior	90
6.7 6.8	Differential Quadrature and Long-Term Integration	90 91
6.9	Long-Term Integration Differential Quadrature	92
6.10	g(y) Li near	93
6. 11	g(y) Nonlinear	93
6. 12	Partial Differential Equations	93
6. 13	Use of the Laplace Transform	94
6. 14	Finding a Particular Solution	94 96
	Bibliography and Comments	30

CHAPTER	VII: NONLI NEAR DI FFERENTI AL EQUATI ONS	
7. 1	Introduction	97
7 0	Fundamental Semigroup Relation	98
5.2 7.4	Acceleration of Iteration and Powers of Two	98
7.4	Relative Invariants	98 100
7. 6	An Alternate Approach Relative Invariants in the Commensurable Case	100
7.0	Nonlinear Differential Equations	105
7. 7	Stochastic Differential Equations	108
	Relative Invariants	109
7 1.0		110
7.11		111
7. 12		111 111
7. 13 7. 14		111
7. 14	Bibliography and Comments	113
	bibiliography and comments	110
СНУБДЕВ	VIII: ASYMPTOTIC BEHAVIOR	
CHAI IER	VIII. ASIMITOTIC DEMAVIOR	
8.1 8.2	Introduction	115
	Motivation of Method	li6
8.3	Radiative Transfer	117
8.4	Time-Dependent Processes	121
8.5	Gradi ent Techni ques	122
8. 6	Asymptotic Behavior of Solutions to Initial Value	100
8. 7	Problems A Pennagantation of the Salution for Large t	122 124
8. 8	A Representation of the Solution for Large t Partial Differential Equations For A and \mathbb{\mathbb{H}}	129
0. 0	The Solution of (8.8.8)	130
8.10		132
8.11	A Representation Of The Solution For Large t	134
8. 12	A Partial Differential Equation For $B(x, \theta)$	
	And Its Solution	137
8. 13	Some Remarks On More General Cases	138
8. 14	$J \cdot \mathbf{I}$	139
8. 15		140
8. 16		141
8. 17		143 143
8. 18 8.19		143
0.19	An Important Functional Equation Bibliography and Comments	143
	Divilogiaphy and commences	110
CHAPTER		
	PROGRAMMI NG	
9. 1	Introduction	145
9. 2	Calculus Of Variations As A Multistage Decision	110
0. 2	Process	146
9. 3	A New Formalism	148
	Ri ccati Equations	150

9. 6	Layered Functionals Dynamic Programing Approach Quadratic Case Bounds Bibliography and Comments	150 151 153 153 154
CHAPTER	X: PARTI AL DIFFERENTI AL EQUATI ONS AND I NVARI ANT I MBEDDI NG	
10. 2 10. 3 10. 4	Introduction On The Fundamental Equations of Invariant Imbedding The Case N= 2 Integral Conditions Mixed Conditions Selective Computation Bibliography and Comments	155 155 157 159 160 160
CHAPTER	XI: MAXI MUM ALTI TUDE	
11. 2 11. 3 11. 4 11. 5 11. 6	Introduction Vertical Motion = I Vertical Motion = I Vertical Motion = I Computational Aspects Maximum Altitude Maximum Range Maximum Penetration Bibliography and Comments	162 162 163 164 165 165 165
CHAPTER	XII: SEMIGROUPS IN SPACE'	
12. 3 12. 4 12. 5 12. 6 12. 7 12. 8 12. 9 12. 1	Introduction Imbedding in Time Advantages and Disadvantages Iteration Imbedding in Space Advantages and Disadvantages An Imbedding in Structure Associated Partial Differential Equation Imbedding in Structure 0 Applications in Mathematical Physics 1 Application to Combinatories 2 Discussion Bibliography and Comments	167 168 168 169 170 171 172 173 174 175 175 176
СНАРТЕГ	R XIII: VARIATIONAL PROBLEMS AND FUNCTIONAL EQUATIONS	
13. 1 13. 2	Introduction Derivation of the Functional Equations Some Generalizations Bibliography and Comments	177 178 178 179

CHAPTER XIV: ALLOCATION PROCESSES, LAGRANGE MULTIPLIERS AND THE MAXIMUM TRANSFORM

14. 1	Introduction	180
14. 2	Lagrange Multipliers	180
14. 3	Successive Approximations	183
14. 4	Application to the Calculus of Variations	183
14. 5	Maxi mum Transform	184
14.6	Definitions	186
14. 7	Analytic Properties of the Maximum Transform	190
14.8	Optimal Distribution of Effort	194
14.9	A Multistage Allocation Process	197
14. 10	The General Transform T	198
14.11	Minimum and Multiplicative Convolution	204
14.12	Examples of Transforms	206
14.13	The Maximum Transform and Semi groups of	
	Transformations	208
14.14	Solutions of the Functional Equation	210
14.15	Parametric Representation	210
	Bibliography and Comments	211
APPEND	IX A	
		212
14.A.1		212
	Linear Systems of Algebraic Equations	212
	B Evaluation of a Polynomial	213
	Evaluation of an Exponential	214
14. A. 3	5 Di scussi on	214
APPEND	IX B	
14.B.1	Introduction	216
	The Medians of an Isosceles Triangle	217
14. 8. 3	Di scussi on	219
SUBJECT I	NDFX	221