Indice General

1	Intro	oducción general	4
2	Sen	nigrupos dinámicos cuánticos y aproximación Markoviana	
		dinámica microscópica	12
	2.1	Introducción	12
	2.2	Semigrupos dinámicos cuánticos	14
		2.2.1 Aspectos formales de los semigrupos	16
	2.3	Eliminación de Variables	18
		2.3.1 Baño de osciladores armónicos	21
		2.3.2 Ecuación Maestra para temperaturas altas	23
	2.4	EMC de segundo orden	24
		2.4.1 La promediación de Davies	27
		2.4.2 Invariancia ante Davies y sistemas de spin	29
	2.5	Conclusiones	31
3	La e	cuación de Schrödinger-Langevin	33
	3.1	Introducción	33
	3.2	Formalismo SL	34
		3.2.1 Segundo orden de la aproximación en cumulantes	35
	3.3	Correspondencia entre correlaciones	39
		3.3.1 \mathcal{F} (t) es un operador estocástico hermitiano	39
		3.3.2 \mathcal{F} (t) es un operador estocástico no-hermitiano	41
	3.4	Correlaciones blancas	43
	3.5	Correspondencia con una matriz estructura arbitraria	
	3.6	Campo estocástico $\mathcal{F}(x,p t)$	46
	3.7	Conclusiones	48
4	Sis	temas descriptos en el espacio de las fases y otras aplica-	
	cio	nes	51
	4.1	Introducción	51

4	4.2	Observables $q y p$ en la ecuación maestra cuántica de segundo	
		orden	
		4.2.1 Coeficientes del KL en la aproximación de segundo orden 5	6
	4.3	Partícula Libre	
		4.3.1 Eliminación de Variables	
		4.3.2 Usando el formalismo de Schrödinger-Langevin para la	
		partícula libre	i
	11	Partícula en una red unidimensional 6	
	4.4		
		4.4.1 Interacción por medio de los operadores de salto 6	J
		4.4.2 Interacción por medio de la posición y el momento de	,
	. ~	la red	
	4.5	Polarón - Ecuación de Boltzmann	
		4.5.1 Matriz estructura	
		4.5.2 Ecuación de Boltzmann	
	4.6	Conclusiones	7
E T.		ware retrieved on an Hamiltoniana Tight Dinding	1
	_	areza estocastica en un manifestica i igni sinanig	31
	5.1	introduction	33
	5.2	Tuncion de Green para la impareza amamica	33
		5.2.1 rispectos generales de la fancion de Green	35 35
		0.2.2 Impareza estatica	36
		5.2.5 impureza amamea	
	5.3	Bensieur de estados promedio para el electron de 1B	39
	5.4	Differential del ciccion de 15 · · · · · · · · · · · · · · · · · ·	92
		5.1.1 Singularidades de (G(Z)),,,	92
		U. I. Z. Evaluación (G(t)),,,	98
	5.5	Discussion de los resultados)2
	5.6	Conclusiones	06
6	Fet	ados efectivos en un modelo Tight-Binding con desorden	
U			8
		Introducción	
		Desorden dinámico	
		CPA para el desorden dinámicol	
	0.3	6.3.1 El medio coherente estático	
		6.3.2 Resultados para el desorden dinámico , 11	
	0.4	6.3.3 Características de la localización y transporte 12	
	6.4	Conclusiones	5
7	Con	iclusiones generales	28

A Notación	135	
B Desarrollo de Terwiel y cumulantes ordenados	139	
C Cálculos con las correlaciones		
D Condiciones sobre los coeficientes de la forma KL D.O. 1 Generador KL en términos de qpp	145 145	
D.0.2 Criterio de Sylvester para sistemas infinitos	146	
E Oscilador armónico E.0.3 Interacción lineal en la posición		
F Promedios para el ruido dicotómico F.l Generalización del teorema de Bourret		
G Integración por partes	156	
H Impureza blanca gaussiana		
Bibliografía		
Lista de publicaciones		