Contents

1. SOME BULK TRANSPORT PROPERTIES

1.1	Introduction	1	
1.2	Electrical resistivity	1	
1.3	The Hall coefficient	5	
1.4	Thermoelectric power	6	
2.	SIMPLE PICTURE OF PROPERTIES		
2.1	Introduction	11	
2.2	Electrical conductivity	12	
2.3	The Hall coefficient	15	
2.4	Thermoelectric effects	19	
3.	ELECTRONS IN SOLIDS		
3.1	Introduction	24	
3.2	The periodic potential in crystals	25	
3.3	The electron velocities	29	
3.4	The density of states	31	
3.5	The reciprocal lattice and Brillouin zones	33	
3.6	The interaction between electrons and the lattice	38	
3.7	Summary and formal definitions	41	
3.8	Brillouin zones	42	
4.	THE INFLUENCE OF FIELDS ON THE MOTION OF ELECTRONS		
4.1	The equations of motion	49	
4.2	The effective mass tensor	51	
4.3	The influence of a steady magnetic field	54	
4.4	The influence of a steady electric field on electrons in a band	57	
4.5	Some orders of magnitude	59	
46	Metals and insulators	61	

4.6 Metals and insulators

5. ELECTRONS AND HOLES IN SEMICONDUCTORS

5.1	The properties of holes	64
5.2	The numbers of electrons and holes at equilibrium	68
5.3	Impurities in semiconductors	73
	Semimetals	76
6.	TRANSPORT COEFFICIENTS	
6.1	Introduction	78
6.2	The Boltzmann equation	78
6.3	The influence of fields	80
6.4	The influence of collisions	81
6.5	The steady-state distribution	82
6.6	The electrical conductivity	82
6.7	The electrical conductivity in semiconductors	91
6.8	The Hall coefficient	92
6.9	The Hall coefficient in semiconductors	100
6.10	The thermoelectric power	103
6.11		106
6.12	The evaluation of S in metals	107
6.13	Phonon drag	109
	The evaluation of S in semiconductors	110
7.	SCATTERING (1): STATIC IMPERFECTIONS	
7.1	Introduction	111
7.2	Some aspects of scattering theory	116
7.3	Residual resistivity of metals	127
7.4	Impurities in metals	131
7.5	Phase shift analysis of scattering	141
7.6	The Friedel sum rule	144
7.7	Impurity scattering and thermopower	148
7.8	Impurity scattering and the Hall coefficient	150
8.	SCATTERING (2): LATTICE VIBRATIONS	
8.1	The geometry of scattering	152
8.2	U-processes	155

0.2	U-processes	155
8.3	The temperature dependence of the resistivity of simple metals	159

8.4	The temperature dependence of ρ at low temperatures	161
8.5	Temperature dependence of the resistivity at intermediate	
	temperatures	165
8.6	The magnitude of electrical resistivity due to phonon scattering	165
8.7 '	The reduced resistivity	167
8.8	Conservation of momentum	170
8.9	Electron scattering and phonon equilibrium	170
) Phonon drag in thermoelectricity	172
	Phonon drag at high temperatures	176
	2 Phonon drag thermopower in semiconductors	178
	B Phonon scattering and diffusion thermopower	179
	Phonon scattering and the Hall coefficient	180

9. SCATTERING (3): MAGNETIC IONS

9.1	The nature of the interaction	182
9.2	Electron scattering by magnetic impurities	186
	Scattering by an isolated magnetic ion-the Kondo effect	189
	Magnetic impurities interacting through an internal field	197
	Scattering by spin waves in a ferromagnetic metal	204
	Nearly ferromagnetic metals-spin fluctuations	211
	Scattering by fluctuations at the absolute zero	219

10. SCATTERING BY MORE THAN ONE MECHANISM

10.1 Electrical resistivity	222
10.2 Hall coefficient	226
10.3 Thermoelectric power	226
10.4 The two-band model	229
10.5 Conclusion	237

11. THE TRANSITION METALS

11.1 The magnitudes of transition metal resistivities	241
11.2 Resistivity at high temperatures	244
11.3 Resistivity at low temperatures due to phonon scattering	245
11.4 The resistivity of nickel-spin mixing	247
11.5 Electron-electron interactions	250
11.6 Electron-electron scattering in simple metals	255
11.7 Hall coefficient	256
11.8 The thermopower	257

12 THE RESISTIVITY OF CONCENTRATED ALLOYS

12.1 Disordered alloys	260
12.2 Ordering in alloys	263
12.3 Change of band structure on alloying	266
12.4 The electrical resistivity of intermetallic compounds	279
BIBLIOGRAPHY	
INDEX	

CATTERING (B): MAGNETIC IONS/ MODEL SHEED

HE TRANSITION METALS substants to single in the staff

400282 61060