CONTENTS

Preface	vii
Acknowledgments	ix
Notation	xix

Chapter 1 Temperature

1-1	Macroscopic Point of View	1
1-2	Microscopic Point of View	2
1-3	Macroscopic vs. Microscopic	2
1-4	Scope of Thermodynamics	3
l-5	Thermal Equilibrium	4
1-6	Temperature Concept	6
l-7	Measurement of Temperature	9
1-8	Comparison of Thermometers	12
l-9	Gas Thermometer	14
l-10	Ideal-gas Temperature	17
1-11	Celsius Temperature Scale	19
1 - 12	Electric Resistance Thermometry	21
1-13	Thermocouple	22
l-14	International Practical Temperature Scale	23

Chapter 2 Simple Thermodynamic Systems

2-l	Thermodynamic Equilibrium	26
2-2	PV Diagram for a Pure Substance	29
2-3	$P\theta$ Diagram for a Pure Substance	31

xii Contents

2-4	PV Surface	33
2-5	Equations of State	34
2-6	Differential Changes of State	36
2-7	Mathematical Theorems	38
2-8	Stretched Wire	40
2-9	Surface Film	42
2-10	Reversible Cell	43
2-11	Paramagnetic Solid	45
2-12	Intensive and Extensive Quantities	46

Chapter 3 Work

4

3-l	Work	51
3-2	Quasi-static Process	52
3-3	Work of a Hydrostatic System	53
3-4	PV Diagram	55
3-5	Work Depends on the Path	56
3-6	Work in Quasi-static Processes	57
3-7	Work of a Wire, a Surface Film, and a Reversible Cell	60
3-8	Work in Changing the Magnetization of a Magnetic Solid	62
3-9	Summary	65
3-10	Compound Systems	65

Chapter 4 Heat and the First Law

4-l	Work and Heat	71
4-2	Adiabatic Work	74
4-3	Internal-energy Function	76
4-4	Mathematical Formulation of the First Law	77
4-5	Concept of Heat	80
4-6	Differential Form of the First Law	81
4-7	Heat Capacity and Its Measurement	82
- 8	Heat Capacity of Water; The Calorie	86
4-9	Equations for a Hydrostatic System	88
4-10	Quasi-static Flow of Heat; Heat Reservoir	89
4-11	Heat Conduction	91
4-12	Thermal Conductivity	93
4-13	Heat Convection	96
4-14	Thermal Radiation; Blackbody	97
4-15	Kirchhoff's Law; Radiated Heat	99
4-16	Stefan-Boltzmann Law	102

Chapter 5 Ideal Gases

N.

5-l	Equation of State of a Gas	111
5-2	Internal Energy of a Gas	115
5-3	Ideal Gas	119
5-4	Experimental Determination of Heat Capacities	122
5-5	Quasi-static Adiabatic Process	124
5-6	Clément and Désormes Method of Measuring y	126
5-7	Rüchhardt's Method of Measuring y	128
5-8	Modifications of Ruchhardt's Method	130
5-9	Speed of a Longitudinal Wave	132

Chapter 6 Kinetic Theory of an Ideal Gas

6-l	The Microscopic Point of View	145
6-2	Equation of State of an Ideal Gas	147
6-3	Distribution of Molecular Velocities	153
6-4	Maxwellian Speeds and Temperature	157
6-5	Equipartition of Energy	161

Chapter 7 Engines, Refrigerators, and the Second Law

7-l	Conversion of Work into Heat, and Vice Versa	166
7-2	The Stirling Engine	168
7-3	The Steam Engine	171
7-4	Internal Combustion Engines	173
7-5	Kelvin-Planck Statement of the Second Law	177
7-6	The Refrigerator	179
7-7	Equivalence of Kelvin-Planck and Clausius Statements	185

Chapter 8 Reversibility and the Kelvin Temperature Scale

Reversibility and Irreversibility	191
External Mechanical Irreversibility	192
Internal Mechanical Irreversibility	194
External and Internal Thermal Irreversibility	194
Chemical Irreversibility	195
Conditions for Reversibility	196
Existence of Reversible Adiabatic Surfaces	197
Integrability of dQ	201
	Reversibility and Irreversibility External Mechanical Irreversibility Internal Mechanical Irreversibility External and Internal Thermal Irreversibility Chemical Irreversibility Conditions for Reversibility Existence of Reversible Adiabatic Surfaces Integrability of dQ

xiv Contents

....

8-9	Physical Significance of λ	204
8-l 0	Kelvin Temperature Scale	207
8-l 1	Equality of Ideal-gas Temperature and Kelvin Temperature	209

Chapter 9 Entropy

9-1	The Concept of Entropy	214
9-2	Entropy of an Ideal Gas	216
9-3	TS Diagram	218
9-4	Carnot Cycle	222
9-5	Entropy and Reversibility	223
9-6	Entropy and Irreversibility	225
9-7	Entropy and Nonequilibrium States	229
9-8	Principle of the Increase of Entropy	231
9-9	Engineering Applications of the Entropy Principle	234
9-10	Entropy and Unavailable Energy	236
9-l 1	Entropy and Disorder	239
9-12	Entropy and Direction; Absolute Entropy	240
9-13	Entropy Flow and Entropy Production	241

Chapter 10 Statistical Mechanics

10-1	Fundamental Principles	251
10-2	Equilibrium Distribution	254
IO-3	Significance of A and β	258
10-4	Partition Function	261
10-5	Partition Function of an Ideal Monatomic Gas	263
IO-6	Equipartition of Energy	266
IO-7	Statistical Interpretation of Work and Heat	268
10-8	Disorder, Entropy, and Information	269

Chapter 11 Pure Substances

11-1	Enthalpy	275
II-2	The Helmholtz and Gibbs Functions	279
11-3	Two Mathematical Theorems	282
11-4	Maxwell's Equations	283
11-5	The T dS Equations	286
11-6	Energy Equations	291
11-7	Heat-capacity Equations	293
11-8	Heat Capacity at Constant Pressure	295
11-9	Thermal Expansivity	297
11-10	Compressibility	302

11-11	Heat Capacity at Constant Volume	306
11-12	Statistical Mechanics of a Nonmetallic Crystal	307
11-13	Frequency Spectrum of Crystals	312
11-14	Thermal Properties of Metals	319

Chapter 12 Phase Transitions; Liquid and Solid Helium

12-l	Joule-Kelvin Effect	335
12-2	Liquefaction of Gases by the Joule-Kelvin Effect	338
12-3	First-order Transition; Clapeyron's Equation	346
12-4	Sublimation; Kirchhoff s Equation	349
12-5	Vapor-pressure Constant	353
12-6	Measurement of Vapor Pressure	359
12-7	Vaporization	361
12-8	Critical State	368
12-9	Fusion	372
12-10	Higher-order Transitions	377
12-11	Liquid and Solid Helium	382

Chapter 13 Special Topics

13-I Stretched Wire	396
13-2 Surface Film	396
13-3 Reversible Cell	399
13-4 Fuel Cell	401
13-5 Dielectric in a Parallel-plate Capacitor	403
13-6 Piezoelectric Effect	406
13-7 Thermoelectric Phenomena	409
13-8 Simultaneous Electric and Heat-Currents in a Conductor	411
13-9 Seebeck and Peltier Effects	413
13-10 Thomson Effect and Kelvin Equations	416
13-I 1 Thermoelectric Refrigeration	419
13-12 Properties of a System of Photons	420
13-1 3 Bose-Einstein Statistics Applied to Photons	422
13-14 Optical Pyrometer	425
13-15 The Laws of Wien and of Stefan-Boltzmann	428
13-1 6 Radiation Pressure; Blackbody Radiation as a	
Thermodynamic System	431
· · · ·	

Chapter 14 Paramagnetism, Cryogenics, Negative Temperatures, and the Third Law

14-1	Atomic Magnetism	442
14-2	Statistical Mechanics of a Magnetic-ion Subsystem	446

xvi Contents

14-3	Magnetic Moment of a Magnetic-ion Subsystem	451
14-4	Thermal Properties of a Magnetic-ion Subsystem	456
14-5	Production of Millidegree Temperatures by	
	Ionic Demagnetization	460
14-6	Low-temperature Thermometry	470
14-7	Magnetic Refrigerator	477
14-8	Polarization of Magnetic Nuclei	479
14-9	Production of Microdegree Temperatures by	
	Nuclear Demagnetization	484
14-10	Negative Kelvin Temperatures	487
14-11	The Experiment of Pound, Purcell, and Ramsey	493
14-12	Thermodynamics at Negative Temperatures	496
14-13	Third Law of Thermodynamics	497

Chapter 15 Superfluidity and Superconductivity

15-1 Superfluidity of Liquid Helium II	509
15-2 Fountain Effect	512
15-3 Second Sound	516
15-4 Fourth Sound	522
15-5 Creeping Film; Third Sound	522
15-6 Other Effects of Superfluidity	526
15-7 Motion of He ³ through Superfluid He ⁴	531
15-8 Superconducting Transition Temperature	532
15-9 Magnetic Properties of Type I Superconductors	536
15-10 Heat Capacities of Type I Superconductors	542
15-l1 Energy Gap	547
15-12 Type II Superconductors	550

Chapter 16 Chemical Equilibrium

16-I	Dalton's Law	557
16-2	Semipermeable Membrane	558
16-3	Gibbs' Theorem	559
16-4	Entropy of a Mixture of Inert Gases	561
16-5	Gibbs Function of a Mixture of Inert Ideal Gases	563
16-6	Chemical Equilibrium	565
16-7	Thermodynamic Description of Nonequilibrium States	566
16-8	Conditions for Chemical Equilibrium	568
16-9	Condition for Mechanical Stability	570
16-10	Thermodynamic Equations for a Phase	572

16-l 1	Chemical Potentials		575
16-l 2	Degree of Reaction		577
16-13	Equation of Reaction	Equilibrium	580

Chapter 17 Ideal-gas Reactions

17-1 Law of Mass Action	586
17-2 Experimental Determination of Equilibrium Constants	587
17-3 Heat of Reaction	590
17-4 Nernst's Equation	594
17-5 Affinity	596
17-6 Displacement of Equilibrium	600
17-7 Heat Capacity of Reacting Gases in Equilibrium	602

Chapter 18 Heterogeneous Systems

18-1	Thermodynamic Equations for a Heterogeneous System	607
18-2	Phase Rule without Chemical Reaction	609
18-3	Simple Applications of the Phase Rule	613
18-4	Phase Rule with Chemical Reaction	617
18-5	Determination of the Number of Components	622
18-6	Displacement of Equilibrium	626
Арре	endix A: Physical Constants	635
Appe	endix B : Riemann Zeta Functions	636
Bibliography Answers to Selected Problems		639
		643
Index	< compared by the second se	649