Contents

Chapter 1

Armando Fernández Guillermet

Lecture 1: "Thermodynamic Approach to States and Processes: Concepts, Methods and Fundamental Results"

1.1 THERMODYNAMICS: THE SCIENCE OF STATES AND PROCESSES	
1.1.1 Targets and Areas of Study	3
1.1.2 Methodology and Philosophy	3
1.1.3 Background	4
1.1.4 Branches and Development of Thermodynamics	5
1.2 ENERGETICS IN MECHANICS AND THE FIRST LAW OF	
TIIERMODYNAMICS: A SUMMARY OF- KEY POINTS	
1.2.11 Work and Kinetic Energy	6
1.2.2 Potentia	7
1.2.3 Conservation of Mechanical Energy	8
1.2.4 The First Law for Closed Systems	8
1.2.5 The Message of the First Law	9
1.2.6 Consequences and Generalizations	10
1.2.7 Application: The Enthalpy Function	10
1.3 THE DIRECTION OF THE NATURAL CHANGE: THE SECOND LAW OF	
THERMODYNAMICS	
1.3.1 Reversible and Irreversible Processes.	12
13.2 The Carnot Engine	13
1.3.3 The Second Law: Classical Statements.	14
1.3.4 The Message of the Second Law	16
1.4 CONSEQUENCES OF THE SECOND LAW: ENTROPY	
1.4.1 The Clausius Theorem	16
1.4.2 Application to Reversible Cycles:	17
1.4.3 Application to an Arbitrary Process	19
1.4.4 Differential forms of the Clausius Theorem: Uncompensated Heat.	20
1.4.5 Processes in a Closed System with a Defined Temperature.	21
1.4.6 Application: Heat Reservoirs and Isolated Systems	22
1.5 ENTROPY CHANGE AND IRREVERSIBLE PROCESSES	24
1.5.1 Contributions to the Entropy Change	
1.5.2 The CLAUSIUS Theorem Expressed as an Equality	25
1.5.3 Summary and Remarks	25

Lecture 2: "The thermodynamics of Physico-Chemical Reactions: 1. Energetics, Entropy Production and Affinity"

2.1. THE THERMODYNAMIC APPROACH TO PHYSICO-CHEMICAL PROCESSES	
2.1.1 Application of the Thermodynamic Laws.	28
2.1.2 cyclic and Stationary state Processes.	30
2.1.3 Analysis and Synthesis of the Entropy Production.	32
2.2 DESCRIPTION OF PHYSICO-CHEMICAL REACTIONS	
2.2.1 Closed Homogeneous Systems.	33
2.2.2 Rate of a Reaction.	35
2.2.3 Simultaneous Reactions.	36
2.2.4 Closed Heterogeneous Systems.	37
2.2.5 Mass Balance Equations in Open Systems.	- 38
2.2.6 Energetics of Reactions in Closed Systems	39
2.2.7 Heat of Reaction and Thermal Coefficients	40
2.2.8 Reactions Between Thermal Coefficients	41
2.2.9 Other Useful Relations	41
2.2.10 The Basic Equations of Calorimetry	43
2.3. ENTROPY PRODUCTION AND AFFINITY IN CLOSED SYSTEMS	
2.3.1 Fundament Relations	43
2.3.2 Affinity: Definition and Relations	46
2.3.3 Entropy Production Rate	48
2.3.4 Affinity Reaction Rate and Equilibrium	50
2.3.5 Simultaneous reactions: Thermodynamic Coupling	52
2.4. DIFFERENTIAL EXPRESSIONS AND THERMODYNAMICS OF AFFINITY	
2.4.1 Fundamental Equations and Maxwell Relations	53
2.4.2 The Total Differential of the Affinity	55
2.4.3 Affinity as an Idependent Variable	57
2.5. AVERAGE THERMODYNAMIC QUANTITIES	
2.5.1 Average Heat of Reaction	58
2.5.2 Average Affinity of a Reaction	60

Lecture 3:"Thermodynamics of Physico-Chemical Reactions: II. The Gibbs-Duhem Equations, Equilibrium and Stability"

3.1. THERMODYNAMICS OF A PHASE	
3.1.1 Summary of Relations for a Closed Phase.	63
3.1.2 Properties of an Open Phase	64
3.1.3 The Chemical Potential	65
3.1.4 Integration of the Gibbs Equations	66

3.1.5 Gibbs - Duhem Equation	67
3.1.6 Identities and Maxwell Relations.	68
3.2. AFFINITY AND CHEMICAL POTENTIALS	
3.2.1 Basic Relations	69
3.2.2 Variation of the Affinity with the Extent of the Reaction	71
3.3. EQUILIBRIUM OF REACTIONS IN HETEROGENEOUS SYSTEMS	
3.3.1 Systems in Thermal and Mechanical Equilibrium	73
3.3.2 Affinity of Reactions in Heterogeneous Systems	75
3.3.3 The Equilibrium condition. Examples.	76
3.4. STABILITY CONSIDERATIONS	
3.4.1 Entropy Production Accompanying a Perturbation.	77
3.4.2 Criterion of Stability.	80
3.4.3 Unilateral Perturbations.	80
3.4.4 Geometrical Interpretations	82
3.5. STABILITY OF PHASES	
3.5.1 General Considerations.	84
3.5.2 Perturbations in a Phase of a Single Component.	85
3.5.3 Thermal and Mechanical Stability.	88
3.5.4 Use of the Helmholtz Energy.	90
3.5.5 Higher Order Mechanical Stability Conditions.	91
3.5.6 Stability with Respect to Bilateral Perturbations.	92
3.5.7 Stability with Respect to Diffusion.	93
3.5.8 Simultaneous Reactions.	97
3.5.9 Stability with Respect to Diffusion in a Multicomponent System.	99
3.5.10 Chemical Equilibrium in a Stable Phase.	101
Lecture 4: "Entropy Production in Non-Equilibrium Processes: I. Analysis	of Basic
Irreversible Phenomena"	
4.1. TOTAL ENTROPY PRODUCTION	
4.1.1 Second Law Analysis of Irreversible Processes	103
4.1.2 Entropy Production in Discontinuous Processes	104
4.2. ENTROPY PRODUCTION RATE	
4.2.1 General Considerations on Stationary State Processes.	113
4.2.2 Analysis of a Prototype Case: Heat Transfer Between Two Reservoirs.	113
4.3 ENTROPY PRODUCTION IN CHEMICAL REACTIONS	
4.3.1 Thermochemical Evaluation of the Entropy of Reaction.	120
4.3.2 Total Entropy Production and Average Affinity.	122
4.3.3 Entropy Production from the Gibbs Equation.	124
4.3.4 Reactions in an Open Phase.	127
4.3.5 Reactions in can Heterogeneous System	129

Lecture 5: "Entropy Production in Non-Equilibrium Processes: II. Generalizations and Phenomenology of the Stationary State"

5.1. PHENOMENOLOGICAL BASIS: TRANSPORT PHENOMENA	
5.1.1 Generalizations on Entropy Production Rate.	133
5.1.2 Linear Laws in Transport Phenomena.	134
5.2. AFFINITY, EQUILIBRIUM AND THE RATE OF CHEMICAL. REACTIONS	
5.2.1 Thermodynamic Consequences of the Mass-Action Law.	135
5.2.2 Dependence of Reaction Rate upon Affinity	138
5.2.3 Equilibrium and Detailed Balancing of Chemical Reactions	140
5.2.4 Key Consequences of the Detailed Balancing Assumption	143
5.3. THE ONSAGER APPROACH	
5.3.1 Fluctuations in an Isolated System at Equilibrium	148
5.3.2 Average Values from Fluctuation Theory	152
5.3.3 Microscopic Reversibility and Detailed Balance.	155
5.3.4 Regression of Fluctuations. Derivation of the Onsager Relations.	156
5.4. THE LINEAR APPROXIMATION TO NON-EQUILIBIRUM PROCESSES	
5.4.1 Superposition and Coupling of Non-Equilibrium Phenomena	158
5.4.2 Relations Between the L-Parameters from Second Law Considerations.	159
5.4.3 Minimum Entropy Production and Stationary States. An Example	161
5.4.4 Generalizations. The Prigogine Theorem.	163

Lecture 6: "Entropy Production in Non-Equilibrium Processes: III. Local Equilibrium. Stability, and Evolution Criteria for Dissipative Systems"

6.1 THE STABILITY PROBLEM	
6.1.1 Stability of Equilibrium States: The Gibbs-Duhem Method.	167
6.1.2 The GLANSDORFF-PRIGOGINE Approach Basic Results	169
6.1.3 Thermodynamic Stability Conditions	173
6.1.4 The Second Differential of the Entropy	173
6.2 THE LOCAL EQUILIBRIUM APPROXIMATION	
6.2.1 Alternative Forms of the GIBBS Equation	177
6.2.2 Local Thermodynamic Quantities.	180
6.2.3 The assumption of Local Equilibrium and Stability	182
6.3 STABILITY OF NON-EQUILIBRIUM DISSIPATIVE SYSTEMS	
6.3.1 Analysis of Chemical Reactions.	184
6.3.2 Generalizations: Excess Entropy Production.	187
6.3.3 Stability of Irreversible Processes in the Linear Range	188
6.4 EVOLUTION OF NON-EQUILIBRIUM DISSIPATIVE SYSTEMS	
6.4.1 The GLANSDORFF-PRIGOGINE Evolution Criterion	189

Chapter 2

Orazio Descalzi and Enrique Tirapegui

NORMAL FORMS IN NONLINEAR DYNAMICS

1 Introduction	198
2 The normal form at the critical point.	200
3 Constant perturbation around the critical point and the unfolding of the	normal form. 218
4 Stochastic perturbations and the stochastic unfolding of the normal forr	n. 224
Bibliography	240

Chapter 3

Horacio S. Wio

APPLICATION OF PATH INTEGRATION TO STOCHASTIC PROCESSES: AN INTRODUCTION

232
243
247
249
250
252
255
257
260
261
266

269
269
270
272
273
276
278
281
281
282
282
283
285
286

Chapter 4

Daniel Walgraef

SPATIO-TEMPORAL PATTERNS FAR FROM EQUILIBRIUM

1 Introduction	291
2 Spatial Patterns in Extended Geometries	203
2.1 Pattern Forming Instabilities in Reaction-Diffusion Dynamics	294
2.2 Pattern Selection and Stability in the Weakly Nonlinear Regime	296
3 Pattern Selection in Interacting Turing-Hopf Bifurcations	304
3.1 Amplitude equations near interacting oscillatory and stationary instabilities	304
3.2 Stability of the equilibrium states	306
3.3 Subharmonic Resonances	307
4 External Forcing of Hopf Bifurcations	308
4.1 Temporal Forcing of a Uniform Hopf Bifurcation.	309
4.2 Temporal Forcing of Wave Patterns	312
5 Convective and Absolute Instabilities in Ginzburg-Landau Equations	315
5.1 Supercritical Bifurcations	316
5.2 Subcritical Bifurcations	321
5.3 Numerical Analysis	325
Bibliography	328

Chapter 5

1 INTRODUCTION	332
1.1 Porous media in nature and industry.	332
1.2 Formation of porous media	335
1.3 Length scales	337
1.4 Long range correlations, fractals and percolation	339
2 MORPHOLOGY	339
2.1 Characteristic magnitudes of the porous space	339
2.2 Topological properties	347
2.3 Fractals properties	352
3 CONTINUUM MODELS	358
3.1 Reconstruction of porous media	.358
3.2.1 Transport processes	361
4 NETWORK MODELS	363
4.1 The dual site-bond (DSB) model	365
4.2 Monte Carlo Simulation of Correlated Networks	370
4.3 Probabilistic analysis of the DSB model	375
4.4 Percolation properties of the DSB model	377
4.5 Percolation for the DSB model on asquare lattice	383
4.6 Application to the characterization of porous solids	385
4.7 Invasion percolation	396
5 CONCLUSIONS AND OPEN PROBLEMS	405
Reference	406

. - - -

Chapter 6

dia.

T. Petrosky and I. Prigogine

EXTENSION OF CLASSICAL, DYNAMICS: EMERGENCE OF IRREVERSIBILITY AND STOCHASTICITY

Introduction	411
2 Interacting particles	412
3 Harmonic lattices	416
4 Anharmonic lattices	420
5 Concluding remarks	424
References	425